
182 M
em

be
r 

of
 th

e 
H

el
m

ho
ltz

 A
ss

oc
ia

tio
n Monazite-type Ceramics for Conditioning of Minor Actinides: 

Structural Characterization and Properties

Carole Babelot

Energie & Umwelt / Energy & Environment
Band/ Volume 182
ISBN 978-3-89336-889-1

En
er

gi
e 

& 
U

m
w

el
t

En
er

gy
 &

 E
nv

ir
on

m
en

t
M

on
az

ite
-t

yp
e 

C
er

am
ic

s 
fo

r 
C

on
di

tio
ni

ng
 o

f M
in

or
 A

ct
in

id
es

 
C

ar
ol

e 
Ba

be
lo

t



Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment	 Band / Volume 182



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Forschungszentrum Jülich GmbH
Institut für Energie- und Klimaforschung (IEK)
Nukleare Entsorgung und Reaktorsicherheit (IEK-6)

Monazite-type Ceramics for Conditioning of 
Minor Actinides: Structural Characterization and 
Properties

Carole Babelot

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment	 Band / Volume 182

ISSN 1866-1793		  ISBN 978-3-89336-889-1



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche 
Nationalbibliografie; detailed bibliographic data are available in the 
Internet at http://dnb.d-nb.de.

Publisher and	 Forschungszentrum Jülich GmbH
Distributor:	 Zentralbibliothek
	 52425 Jülich
	 Tel: 	 +49 2461 61-5368 
	 Fax: 	 +49 2461 61-6103
	 Email: 	 zb-publikation@fz-juelich.de
		  www.fz-juelich.de/zb
	
Cover Design:	 Grafische Medien, Forschungszentrum Jülich GmbH

Printer:	 Grafische Medien, Forschungszentrum Jülich GmbH

Copyright:	 Forschungszentrum Jülich 2013

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment, Band / Volume 182

D 82 (Diss., RWTH Aachen, University, 2012)

ISSN 1866-1793
ISBN 978-3-89336-889-1

Neither this book nor any part of it may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any 
information storage and retrieval system, without permission in writing from the publisher.



 

 

 

 

 

 

 

 

À tous ceux qui m’ont aidée au cours de mes études supérieures, 

de Strasbourg à Jülich, en passant par Limoges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

« Je sers la science et c’est ma joie. » 

Basile, disciple de Léonard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 

Content 

 

Abbreviations .................................................................................................................... vii 

1. Introduction ..................................................................................................................... 1 

2. Background ..................................................................................................................... 7 

2.1. Nuclear fuel cycle .................................................................................................... 7 

2.1.1. Spent fuel .......................................................................................................... 8 

2.2. Nuclear waste management strategies ..................................................................... 9 

2.2.1. Partitioning and transmutation strategy ............................................................ 9 

2.2.2. Partitioning and conditioning strategy ............................................................ 11 

2.3. Nuclear waste forms for the P&C strategy ............................................................ 11 

2.3.1. Glasses ............................................................................................................ 12 

2.3.2. Ceramics ......................................................................................................... 12 

2.3.2.1. Aqueous durability of ceramics ............................................................... 14 

2.3.2.2. Radiation tolerance of ceramics ............................................................... 15 

2.4. Lanthanides and actinides chemistry ..................................................................... 17 

2.4.1. Lanthanide chemistry ...................................................................................... 17 

2.4.1.1. Lanthanum chemistry ............................................................................... 20 

2.4.1.2. Europium chemistry ................................................................................. 21 

2.4.2. Actinide chemistry .......................................................................................... 21 

2.5. Spectroscopic methods ........................................................................................... 23 

2.5.1. Time resolved laser fluorescence spectroscopy .............................................. 23 

2.5.1.1. Difference between fluorescence and phosphorescence .......................... 23 

2.5.1.2. Elements with fluorescence ability .......................................................... 25 

2.5.1.3. Fluorescence lifetime ............................................................................... 30 

2.6. Monazite ................................................................................................................ 32 

2.6.1. Structure, composition and occurrence ........................................................... 32 

2.6.2. Monazite versus xenotime .............................................................................. 35 

2.6.3. Synthesis methods ........................................................................................... 35 

2.6.4. Monazite as a host phase for actinides ............................................................ 36 

3. Experimental part .......................................................................................................... 39 

3.1. Chemicals, methods and apparatuses ..................................................................... 39 

3.1.1. Chemicals ........................................................................................................ 39 

3.1.2. Synthesis of monazite-type powder ................................................................ 39 

3.1.3. Pressing and sintering of REPO4 pellets ......................................................... 41 

3.1.4. Physical properties of pellets .......................................................................... 41 

3.1.4.1. Density measurements ............................................................................. 41 

3.1.4.2. Vickers microhardness and fracture toughness ........................................ 42 

3.1.5. Thermogravimetry coupled with differential scanning calorimetry ............... 43 

3.1.6. Powder X-ray diffraction analysis .................................................................. 43 

3.1.7. Raman spectroscopy ....................................................................................... 44 

3.1.8. Scanning electron microscope ........................................................................ 44 

3.1.9. Specific surface area measurements ............................................................... 45 

3.1.10. Dilatometer ................................................................................................... 45 

3.1.11. Inductive coupled plasma mass spectrometry ............................................... 45 



ii 

3.1.12. Aqueous durability tests ................................................................................ 46 

3.1.13. Radiation tolerance tests by ion implantation ............................................... 48 

3.1.14. Time resolved laser fluorescence spectroscopy ............................................ 49 

3.1.15. Extended X-ray absorption fine structure ..................................................... 50 

4. Results and discussion .................................................................................................. 53 

4.1. Characterization of monazite-type powder ............................................................ 53 

4.1.1. Thermal behavior of La-monazite-type powder by means of TG-DSC 
measurements ............................................................................................................ 53 

4.1.2. Structure analysis of monazite-type powder by means of X-ray diffraction .. 56 

4.1.2.1. Structure analysis of La-monazite-type powder sintered at 1300 °C ...... 57 

4.1.2.2. Effects of a thermal treatment on La-monazite samples .......................... 59 

4.1.2.3. Effect of a dopant incorporated in the La-monazite crystal structure ...... 65 

4.1.3. Time resolved laser fluorescence spectroscopy .............................................. 69 

4.1.3.1. TRLFS measurements on Eu-doped LaPO4 powder ............................... 69 

4.1.3.2. TRLFS measurements on Cm-doped LaPO4 powder .............................. 74 

4.1.4. Extended X-ray absorption fine structure ....................................................... 78 

4.1.4.1. Fit of the Fourier transformation of L3-edge k3-weighted EXAFS spectra
............................................................................................................................... 78 

4.1.4.2. Interpretation of the results ...................................................................... 79 

4.2. Characterization of monazite-type pellets ............................................................. 81 

4.2.1. Sintering process ............................................................................................. 81 

4.2.2. Microstructure study of La-monazite pellet by means of SEM ...................... 81 

4.2.3. Optimization of the density of the pellets depending on the calcination 
temperature ............................................................................................................... 82 

4.2.4. Vickers microhardness and fracture toughness of La-monazite ..................... 87 

4.2.5. Dilatometric measurements on La-monazite calcined at different temperatures
................................................................................................................................... 88 

4.3. Resistance to corrosion and to irradiation of monazite-type samples .................... 92 

4.3.1. Aqueous durability tests on monazite-type samples ....................................... 92 

4.3.1.1. Normalized weight loss and normalized dissolution rate of La in La-
monazite ................................................................................................................ 92 

4.3.1.2. Normalized dissolution rate of La and Eu in Eu-doped La-monazite ..... 96 

4.3.1.3. Comparison with the literature ................................................................. 97 

4.3.2. Radiation tolerance tests on La-monazite pellets by means of ion implantation
................................................................................................................................. 100 

4.3.2.1. Raman spectroscopy of La-monazite pellets before ion implantation ... 100 

4.3.2.2. Raman spectroscopy of La-monazite pellets after Kr2+ implantation .... 102 
5. Conclusion and outlook .............................................................................................. 105 

References ....................................................................................................................... 111 

Publications and presentations of this work .................................................................... 121 

Acknowledgements ......................................................................................................... 123 

Extended abstract ............................................................................................................ 125 

Zusammenfassung ........................................................................................................... 127 



 

iii 

Table of figures 

 

Figure 1: Energy consumption worldwide in EJ per year, from 1850 to 2000 [1]. ............ 1 

Figure 2: Nuclear fuel cycle [13]. ....................................................................................... 7 

Figure 3: Evolution of ingestion radiotoxicity of one ton of LWR spent nuclear fuel at a 
burn-up of 50 GWd/tHM versus time. The horizontal line is the reference level: the 
quantity of natural uranium needed to produce one ton of fresh fuel with an enrichment of 
4.2 % 235U, i.e. 7.83 t [21; 23]........................................................................................... 10 

Figure 4: Critical amorphization dose versus temperature of REPO4 ceramics. The arrows 
marked with an m indicates the range of Tc values for the monazite structure and the ones 
with a z those for the zircon structure [50]. ...................................................................... 16 

Figure 5: Atomic radius (pm) versus atomic number Z of the lanthanides (data from 
[53])................................................................................................................................... 18 

Figure 6: Effective ionic radius of Ln3+ (pm) versus atomic number Z of the lanthanides, 
in case of a CN equals to 9 (red plot) and a CN equals to 8 (blue plot) (data from [56]). 20 

Figure 7: Jablonski diagram (modified from [62]). .......................................................... 24 

Figure 8: UV excitation of a free curium ion [66]. ........................................................... 26 

Figure 9: Fluorescence emission spectra of Cm (III) aquo ion, Cm (III)/calcite sorption 
species 1 and Cm (III)/calcite sorption species 2 [67]. ..................................................... 27 

Figure 10: Energy levels of Eu (III) in the visible spectrum [68]. .................................... 28 

Figure 11: Energy levels of a free Eu (III) ion excited by UV light [66]. ........................ 29 

Figure 12: Eu (III) fluorescence emission versus the wavelength (nm) of a free Eu ion 
(partly [60]). ...................................................................................................................... 29 

Figure 13: Energy levels of a free Eu ion excited by direct excitation [66]. .................... 30 

Figure 14: Lifetime measurements: Cm (III) fluorescence emission versus the time (µs) 
of a free Cm (III) ion (black) and a Cm (III) ion in calcite (red) [66]. ............................. 31 

Figure 15: Scheme of the radiationless relaxation of Cm (III) via OH-vibration (modified 
from [60]). ......................................................................................................................... 31 

Figure 16: Crystal structure of LaPO4. ............................................................................. 33 

Figure 17: Phase diagram of La2O3 – P2O5 [75]. The red part corresponds to the 
composition of the La-monazite synthesized here. ........................................................... 34 

Figure 18: Rare earth abundances in coexisting monazite and xenotime, normalized to 
average chondrite mineral [79]. ........................................................................................ 35 

Figure 19: Simple autoclave composed of four components and the Teflon beaker with its 
top (left) and PARR autoclave with the pressure gage, the heater and the controller 
(right). ............................................................................................................................... 40 

Figure 20: SEM-photography showing an indent and cracks on a ceramic due to the 
Vickers microhardness measurements. The average length of the diagonals dc and the 
average length of the cracks cl can be determined ............................................................ 43 

Figure 21: Flow chart representing the synthesis of La(1-x)EuxPO4 for aqueous durability 
tests. .................................................................................................................................. 47 

Figure 22: Shaking oil bath at 90 °C used for aqueous durability tests. Closed (left) and 
open (right). ....................................................................................................................... 48 

Figure 23: TRLFS experimental set-up: optical set-up with the dye cuvettes (left), and a 
sample emitting light (right). ............................................................................................ 50 



iv 

Figure 24: Schema of a TRLFS experimental set-up. ....................................................... 50 

Figure 25: TG-DSC measurement on La-monazite powder. ............................................ 54 

Figure 26: TG and dTG/dT curves of La-monazite powder. Inset: zoom-in of the graph 
from 600 °C to 1300 °C. ................................................................................................... 54 

Figure 27: XRD pattern (from 0° to 90°) of LaPO4 sintered at 1300 °C (black) together 
with reference data of LaPO4 (blue) and La3PO7 (red) (a), and its zoom in (from 0° to 
44°) (b). ............................................................................................................................. 58 

Figure 28: XRD patterns of La-monazite powder after a thermal treatment at T1, T2, T3 
(a),  T3, T4 (b), and T4, T5 (c). ........................................................................................... 60 

Figure 29: Representation of the Hall-Williamson method applied on La-monazite  
calcined at T1 to T5, respectively. ..................................................................................... 61 

Figure 30: Mean nanocrystallite size L (black) and lattice distortion ε (grey) of La-
monazite powder versus thermal treatment temperature (T1 to T5). ................................. 62 

Figure 31: Evolution with the temperature of the size of the nanocrystallites measured by 
the Hall-Williamson method (L, black) and of the particles measured by BET method (D, 
red). ................................................................................................................................... 63 

Figure 32: SEM-photography of La-monazite particles synthesized by hydrothermal route 
after drying at 95 °C. ......................................................................................................... 64 

Figure 33: SEM-photography of La-monazite particles synthesized by hydrothermal route  
(drying at 95 °C), at a magnification of 150 000. ............................................................. 65 

Figure 34: Lattice parameter a of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 
1.00) compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42].
........................................................................................................................................... 67 

Figure 35: Lattice parameter b of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 
1.00) compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42].
........................................................................................................................................... 68 

Figure 36: Lattice parameter c of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 
1.00) compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42].
........................................................................................................................................... 68 

Figure 37: Volume of the unit cell of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 
and 1.00) compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) 
[42]. ................................................................................................................................... 69 

Figure 38: Excitation spectrum of Eu-doped LaPO4 before thermal treatment.  The 
5D0 � 7F0 transitions of both the major and minor species are indicated with arrows. ... 70 

Figure 39: Flow chart for point group determination in single crystals,  based on selected 
transitions in the Eu (III) ion [116]. .................................................................................. 71 

Figure 40: Emission spectra of the major Eu species of Eu-doped LaPO4 from direct 
excitation (before and after thermal treatment). The contributions of the three main 
transitions are indicated. ................................................................................................... 72 

Figure 41: Emission spectra of the minor Eu species in Eu-doped LaPO4 from direct 
excitation (before and after thermal treatment). ............................................................... 73 

Figure 42: Excitation spectrum of Cm-doped LaPO4 before thermal treatment. ............. 75 

Figure 43: A comparison of the excitation spectrum, emission spectrum from UV 
excitation, and low resolution emission spectrum from direct excitation at 602.5 nm of 
Cm-doped LaPO4 after thermal treatment. ....................................................................... 76 



 

v 

Figure 44: High resolution emission spectra from direct excitation of Cm-doped LaPO4 
after thermal treatment. The arrows show the wavelengths mentioned in the legend. ..... 77 

Figure 45: Experimental data and fit of the FT data of Eu (5 mol%)-doped LaPO4. The fit 
results are presented in Table 15. ...................................................................................... 78 

Figure 46: SEM-photography at a magnification of 10 000, of La-monazite pellets 
sintered at 1400 °C. ........................................................................................................... 82 

Figure 47: Typical compressibility curve of ceramic material. ........................................ 83 

Figure 48: Schematic representation of the microstructural elements (primary particles. 
aggregates and agglomerates) of ceramic powder (as synthesized sample and after 
drying) synthesized by wet chemical method. Average size D is given for each elements 
[123]. ................................................................................................................................. 83 

Figure 49: Green density (ρg) and sintering density (ρs) of pellets pressed with La-
monazite powder after calcination at T2 = 350 °C. ........................................................... 84 

Figure 50 : Green density (ρg) and sintering density (ρs) of pellets pressed with La-
monazite powder after calcination at T3 = 500 °C. ........................................................... 85 

Figure 51 : Green density (ρg) and sintering density (ρs) of pellets pressed with La-
monazite powder after calcination at T4 = 950 °C. ........................................................... 85 

Figure 52 : Summation of the pressures P2, Popt, P1 obtained for T = 350 °C, 500 °C and 
950 °C. .............................................................................................................................. 86 

Figure 53: Indent and cracks on a La-monazite pellet due to the Vickers microhardness 
measurements. ................................................................................................................... 87 

Figure 54 : Relative density versus the temperature of pellets made of powder calcined at 
350 °C (red), 500 °C (black), and 950 °C (green), respectively. ...................................... 89 

Figure 55 : Derivative of relative density versus the temperature of pellets made of 
powder calcined at 350 °C (red), 500 °C (black), and 950 °C (green), respectively. ....... 89 

Figure 56: SEM photos of crushed LaPO4 pellets fractionated with 100 µm- and 180 µm-
sieves. Pictures are at a magnification of 100 (left) and 800 (right). ................................ 93 

Figure 57: XRD pattern of LaPO4 sample used for leaching tests (black)  together with 
reference data of LaPO4 (blue). ........................................................................................ 93 

Figure 58: Schematic representation of the normalized weight loss (NL(i)) of a low 
soluble sample.  The cases of a sample either with or without initial perturbations are 
presented [39; 128]. .......................................................................................................... 95 

Figure 59: Normalized weight loss NL (La) of unwashed La-monazite sample versus time.
........................................................................................................................................... 95 

Figure 60: Normalized dissolution rate RL (La (grey) and Eu (red)) of Eu-doped LaPO4. 
RL is calculated with NL values between day 3 and day 28. .............................................. 97 

Figure 61: Raman spectrum of a LaPO4 pellet with the corresponding fit and the peak 
positions (blue). ............................................................................................................... 100 

Figure 62: Normal modes of vibration (ν1 to ν4) of tetrahedral XY4 molecules like PO4 
[135]. ............................................................................................................................... 102 

Figure 63: Intensity versus Raman shift of LaPO4 pellets before and after ion 
bombardment. ................................................................................................................. 103 

 

 

 



vi 

 

 

 

  



 

vii 

Abbreviations 

 

a lattice parameter a 

An actinides 

ANKA Angströmquelle Karlsruhe 

a.u. arbritary unit 

b lattice parameter b 

β angle ≠ 90° in the monoclinic system 

BET Brunauer Emmett Teller: method of specific surface area measurement 

c lattice parameter c 

cl average length of cracks 

χ (k) EXAFS equation 

CN Coordination Number 

d days 

D diameter 

dc average length of the diagonals of the Vickers indents 

DSC Differential Scanning Calorimetry 

E Young’s modulus 

EDX Energy-Dispersive X-ray 

ESRF European Synchrotron Radiation Facility 

EXAFS Extended X-ray Absorption Fine Structure 

F load 

FP Fission Products 

FT Fourier Transformation 

h height 

HAW High Active Waste 

HLLW High Level Liquid Waste  

ICP-MS Inductively Coupled Plasma-Mass Spectrometry 

IEK-6 Institut für Energie- und Klimaforschung, Nukleare Entsorgung und 

Reaktorsicherheit, within the Forschungszentrum Jülich GmbH 

ISC intersystem crossing 



viii 

k wave vector 

KIT-INE Institute for Nuclear Waste Disposal (INE) within the Karlsruhe 

Institute of Technology (KIT) 

λ wavelength 

L mean nanocrystallite size 

Ln lanthanides 

LWR Light Water Reactor 

m mass 

MA Minor Actinides (Np, Am, Cm) 

NEA Nuclear Energy Agency  

NL normalized weight loss 

MCC Materials Characterization Centre 

P pressure 

P&C Partitioning and Conditioning 

PGI-9 Peter Grünberg Institut, Halbleiter-Nanoelektronik, within the 

Forschungszentrum Jülich GmbH 

Popt optimal pressure 

P&T Partitioning and Transmutation 

PWR Pressurized Water Reactor 

ρg green density 

ρH2O density of water 

ρp density of the paraffin 

ρs sintered density  

rAt atomic radius 

RL normalized dissolution rate 

RE Rare Earths 

RT Room Temperature 

SEM Scanning Electron Microscope 

t time 

T temperature 

T1 to T5 temperature of the thermal treatment of La-monazite powder  



 

ix 

TG thermogravimetry 

Tc critical amorphization temperature 

Tm melting point 

TRLFS Time Resolved Laser Fluorescence Spectroscopy 

V volume 

XRD X-Ray Diffraction 

Z atomic number 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1.

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

Th

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

 

Figure 

1. 

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

Th

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

 

Figure 

 Introduction

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

The

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

Figure 

Introduction

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

-

-

-

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

ese concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

Figure 

Introduction

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

- 

- 

- 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

Figure 

Introduction

In 2011 the world population reached seven billions of humans 

billion 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

 

 

 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

Figure 1

Introduction

In 2011 the world population reached seven billions of humans 

billion in

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

 Which 

 What 

 What 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

1: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

in

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Which 

What 

What 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

in 1800, which corresponds to 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Which 

What 

What 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

development

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Which 

What 

What 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

development 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption 

needs more and mo

Over the years, 

biomass. However, the 

Which 

What 

What 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

station on March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

 has 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

consumption grew

needs more and mo

Over the years, 

biomass. However, the 

Which 

What are the impacts of

What are the impacts of the energy sources with regard to the 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

has 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

grew

needs more and mo

Over the years, 

biomass. However, the 

Which energy source

are the impacts of

are the impacts of the energy sources with regard to the 

Energy sources 

the citizens. During the first decade of the 21

atmosphere and 

se concerns 

In this framework, the

change mitigation option

March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

Introduction  

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

has 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

grew

needs more and mo

Over the years, 

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

Energy sources do

the citizens. During the first decade of the 21

atmosphere and their

se concerns led to the growing

In this framework, the

change mitigation option

March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

 

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

has 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

grew

needs more and mo

Over the years, the 

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

do

the citizens. During the first decade of the 21

their

led to the growing

In this framework, the

change mitigation option

March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

has an 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

grew 

needs more and mo

the 

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

do 

the citizens. During the first decade of the 21

their

led to the growing

In this framework, the

change mitigation option

March 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

an 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

 from 25

needs more and more energy

the 

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

 not only

the citizens. During the first decade of the 21

their

led to the growing

In this framework, the

change mitigation option

March 11, 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

an 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

the 

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only

the citizens. During the first decade of the 21

their 

led to the growing

In this framework, the

change mitigation option

11, 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

an impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

the energy source

biomass. However, the 

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only

the citizens. During the first decade of the 21

 impact on the global warming 

led to the growing

In this framework, the 

change mitigation option

11, 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

energy source

biomass. However, the following

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

 use of 

change mitigation option

11, 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

energy source

following

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of 

change mitigation option

11, 2011

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

energy source

following

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of 

change mitigation option

2011

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25

re energy

energy source

following

energy source

are the impacts of

are the impacts of the energy sources with regard to the 

not only 

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of 

change mitigation option. 

2011

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

from 25 EJ in 1850 up to 450

re energy

energy source

following

energy source 

are the impacts of

are the impacts of the energy sources with regard to the 

 have

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of 

. T

2011

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

re energy. 

energy source

following

 is safe? Which one

are the impacts of

are the impacts of the energy sources with regard to the 

have

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of 

The 

2011 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

 

energy source

following

is safe? Which one

are the impacts of

are the impacts of the energy sources with regard to the 

have

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

use of nuclear energy

he 

 had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

energy source

following

is safe? Which one

are the impacts of the energy sources on 

are the impacts of the energy sources with regard to the 

have

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

nuclear energy

he 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

energy source

following 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

have to be 

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing

nuclear energy

he catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

energy source

 questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

to be 

the citizens. During the first decade of the 21

impact on the global warming 

led to the growing 

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

energy source

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

to be 

the citizens. During the first decade of the 21

impact on the global warming 

 consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

energy sources

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

to be 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

s 

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

to be 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

 varied from

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

to be safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

1800, which corresponds to a 600

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

a 600

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

a 600

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

questions 

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

a 600

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

questions are still in the discussion

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

a 600 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

are still in the discussion

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

nuclear energy 

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

 % increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

are still in the discussion

is safe? Which one

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and 

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

 could be

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety. 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

are still in the discussion

is safe? Which one 

the energy sources on 

are the impacts of the energy sources with regard to the 

safe and efficient

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

could be

catastrophe at the 

had impacts on the perception of 

intensified the discussion on the nuclear safety.  

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450

varied from

are still in the discussion

 has the best efficiency? 

the energy sources on 

are the impacts of the energy sources with regard to the 

efficient

the citizens. During the first decade of the 21

impact on the global warming 

consumption of energy sources

could be

catastrophe at the 

had impacts on the perception of 

 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 1850 up to 450 EJ in 2000. 

varied from

are still in the discussion

has the best efficiency? 

the energy sources on 

are the impacts of the energy sources with regard to the 

efficient

the citizens. During the first decade of the 21st

impact on the global warming 

consumption of energy sources

could be

catastrophe at the 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

varied from 

are still in the discussion

has the best efficiency? 

the energy sources on 

are the impacts of the energy sources with regard to the 

efficient
st 

impact on the global warming 

consumption of energy sources

could be

catastrophe at the 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

 gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the energy sources on 

are the impacts of the energy sources with regard to the 

efficient

 century, 

impact on the global warming have increasi

consumption of energy sources

could be

catastrophe at the 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the energy sources on the environment? 

are the impacts of the energy sources with regard to the 

efficient

century, 

have increasi

consumption of energy sources

could be

catastrophe at the Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

efficient

century, 

have increasi

consumption of energy sources

could be perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

efficient; 

century, 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

 they also 

century, 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

century, 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

impact on the consumption of energy.

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

century, 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

. 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

century, 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

 Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

century, the 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

EJ in 2000. T

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

the 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within 

Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

The worldwide population 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

the 

have increasi

consumption of energy sources

perceived as an important climate 

Fukushima 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans 

% increase within approx.

Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also 

the 

have increasin

consumption of energy sources

perceived as an important climate 

 Daiichi nuclear power 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000

In 2011 the world population reached seven billions of humans compared to 

approx.

Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

they also have 

the CO

ngly been 

consumption of energy sources other

perceived as an important climate 

Daiichi nuclear power 

had impacts on the perception of 

: Energy consumption worldwide in EJ per year, from 1850 to 2000 [1]

compared to 

approx.

Figure 

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 10

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

are still in the discussion: 

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the 

have 

CO

gly been 

other

perceived as an important climate 

Daiichi nuclear power 

had impacts on the perception of 

[1]

compared to 

approx.

Figure 1

consumption per year from 1850 to 2000 worldwide in EJ (1 EJ = 1018

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

:  

has the best efficiency? 

the environment? 

are the impacts of the energy sources with regard to the waste

have 

CO2

gly been 

other

perceived as an important climate 

Daiichi nuclear power 

had impacts on the perception of nuclear energy

[1].

compared to 

approx.

1 
18 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

 

has the best efficiency? 

the environment? 

waste

have 

2 

gly been 

other

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

. 

compared to 

approx.

 shows

 J) 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

has the best efficiency? 

the environment?  

waste

have to be 

 emission

gly been 

other 

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

 

compared to 

approx. 

shows

J) 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

has the best efficiency?  

 

waste

to be 

emission

gly been 

 than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

compared to 

 200

shows

J) [1]

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

 

waste

to be 

emission

gly been 

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

compared to 

200

shows

[1]

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

 problem

to be 

emission

gly been 

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

1

compared to 

200

shows

[1]. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

to be 

emission

gly been on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

1. 

compared to 

200 years. 

shows 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

to be accepted

emission

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

. Introduction

compared to 

years. 

 the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

accepted

emission

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

Introduction

compared to only one 

years. 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

accepted

emission

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

Introduction

only one 

years. 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

accepted

emissions 

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

 

Introduction

only one 

years. 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem

accepted

 to

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy

 

Introduction

only one 

years. 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

problem?

accepted

to

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

nuclear energy 

Introduction

only one 

years. This 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

? 

accepted

to 

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

 

Introduction

only one 

This 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic 

 

accepted 

 the 

on the news

than fossil fuel

perceived as an important climate 

Daiichi nuclear power 

 and 

Introduction

only one 

This 

the energy 

. The energy 

he worldwide population 

gas, oil, coal, nuclear, hydraulic to 

 by

the 

on the news

than fossil fuels

perceived as an important climate 

Daiichi nuclear power 

and 

Introduction

1

only one 

This 

the energy 

. The energy 

he worldwide population 

to 

by

the 

on the news. 

s. 

perceived as an important climate 

Daiichi nuclear power 

and 

Introduction 

1 

only one 

This 

the energy 

. The energy 

he worldwide population 

to 

by 

the 

. 

. 

perceived as an important climate 

Daiichi nuclear power 

and 

 



1. Introduction 

2 

The nuclear safety plays an important role in political discussions. The nuclear waste 

issue can be divided in two main topics: the safety of nuclear power plant and the safe 

disposal of nuclear waste. The first issue concerns the countries that are currently 

producing nuclear energy. The second issue concerns the countries which have once 

made the choice to use nuclear energy. As the radiotoxicity of High Active Waste 

(HAW) needs about one million years to degenerate, the future generations will also have 

to deal with the nuclear waste issue. 

However, if the minor actinides (MA) are removed from the HAW by partitioning and 

converted into the shorter-lived or stable elements by transmutation, the final waste loses 

most of its long-term radiotoxicity. Thus, partitioning and transmutation (P&T strategy) 

are considered as the attractive options for reducing the burden on deep underground 

repositories. In addition, these separated MA can also be conditioned (P&C strategy) in 

specifically adapted ceramics to ensure their safe final disposal over geological times. 

The highly active liquid waste produced during the reprocessing must be conditioned 

industrially by using a vitrification process before the final disposal. Although the widely 

used borosilicate glasses meet the specifications needed, more stable waste forms could 

considerably improve the long-term safety of nuclear disposal. In the last decades, the 

focus of the research was directed at the study of the ceramic waste forms. These forms 

seem to be promising materials in particular for the conditioning of MA which dominate 

the long-term radiotoxicity of the spent nuclear fuel [2-4]. 

 

Waste management in the European countries 

The policies introduced by European countries are summarized in Table 1. At the 

moment the nuclear spent fuels are foreseen either for the direct disposal in deep 

underground repositories or for reprocessing. 
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Table 1: Waste management for used fuel and HLW from nuclear power reactors in Europe [5]. 
Country Policy Facilities and progress towards final repositories 

Belgium Reprocessing Central waste storage at Dessel 

Underground laboratory established 1984 at Mol 

Construction of repository to begin about 2035 

Finland Direct disposal Program start 1983, two used fuel storages in operation 

Posiva Oy set up 1995 to implement deep geological disposal 

Underground research laboratory Onkalo under construction 

Repository planned from this, near Olkiluoto, open in 2020 

France Reprocessing Underground rock laboratories in clay and granite 

Parliamentary confirmation in 2006 of deep geological disposal, 

containers to be retrievable and policy “reversible” 

Bure clay deposit is likely repository site to be licensed 2015, 

operating 2025 

Germany Reprocessing but 

moving to  

direct disposal 

Repository planning started 1973 

Used fuel storage at Ahaus and Gorleben salt dome 

Geological repository may be operational at Gorleben after 2025 

Spain Direct disposal ENRESA established 1984, its plan accepted 1999 

Central interim storage at Villar de Canas from 2016 (volunteered 

location) 

Research on deep geological disposal, decision after 2010  

Sweden  Direct disposal Central used fuel storage facility (CLAB) in operation since 1985 

Underground research laboratory at Aspo for HLW repository 

Osthammar site selected for repository (volunteered location) 

Switzerland Reprocessing Central interim storage for HLW used fuel at ZZL Wurenlingen 

since 2001 

Smaller used fuel storage at Beznau 

Underground research laboratory for HLW repository at Grimsel 

since 1983 

Deep repository by 2020, containers to be retrievable 

United 

Kingdom 

Reprocessing Low-level waste repository in operation since 1959 

HLW from reprocessing is vitrified and stored at Sellafield 

Repository location to be on basis of community agreement 

New NDA subsidiary to progress geological disposal. 
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Germany’s position regarding the nuclear waste management 

The German government decided to begin a phase-out of nuclear power as source of 

electricity generation. This process will involve the decommissioning of the nuclear 

reactors and the managing of the large amount of nuclear waste in the coming years. The 

nuclear waste management strategy has already been discussed within the German 

government. Up to 2002, the nuclear reprocessing of spent fuel was allowed in Germany. 

Used fuel was transported to La Hague (France) or Sellafield (England) where the 

reprocessing took place. The vitrified high level waste that results from this process was 

transported back to Germany. Since 2005, the reprocessing of spent fuel is not allowed 

anymore, so that the used fuel is now considered as final waste in Germany. The waste is 

first stored in ponds, for example at the reactor sites, before being transported to the final 

repositories [5-7]. 

 

Scope of this PhD research project 

The present work deals with ceramic waste forms and their role in the conditioning of the 

nuclear waste, in particular with regard to the MA. Due to their crystallinity, ceramics 

have more valuable properties than glasses and could therefore procure safer conditions 

for the disposal of the radioactive waste. 

The analysis of the previous research on ceramic waste forms [8-11] shows that the focus 

should be made on phosphate material, in particular monazite-type ceramics. Once the 

choice on the material was made, the synthesis of the lanthanum-monazite (LaPO4) will 

be performed. Several methods are available. However, the wet-chemical ways offer 

benefits as they are almost dust-free which is safer, if the monazite is doped with 

radionuclides. Hydrothermal synthesis is chosen due to its ability to procure good 

crystallinity at low temperature. 

Structural and morphological characteristics (applying X-Ray Diffraction (XRD) and 

Scanning Electron Microscope (SEM)) combined with physical and thermal properties of 

the samples (using thermogravimetry, Differential Scanning Calorimetry (TG-DSC) and 

dilatometry) will be realized in order to describe the material. The use of state-of-the-art 

spectroscopy (Time Resolved Laser Fluorescence Spectroscopy (TRLFS) and Extended 

X-ray Absorption Fine Structure (EXAFS)) will permit the molecular level process 
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understanding of ceramic waste form. An essential parameter which describes the 

stability of the host phases is the dissolution rate under conditions of relevance for final 

repositories. A set-up and an experimental method will be built in order to obtain the 

initial rates on lanthanum phosphate and europium-doped lanthanum phosphate samples. 

 

The objectives of this PhD thesis cover: 

- the successful synthesis of monazite-type ceramics, including its doping with actinide 

surrogates, and the formation of a (La, Eu)PO4 solid solution, 

- the advanced characterization of monazite powder and monazite pellets, in particular 

with TRLFS,  

- the development of a set-up for aqueous durability tests, the identification of the best 

synthesis method for the leached samples, and the discussion of the dissolution rate 

results. 
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2. Background 

2.1. Nuclear fuel cycle 

The nuclear fuel cycle is an industrial process which produces electricity from uranium in 

nuclear reactors. It starts with the uranium ore extraction and ends with the waste 

management [12]. Figure 2 shows a flow chart of the nuclear fuel cycle [13]. After the 

mining of natural uranium from uranium deposit, the raw material has to pass through 

several steps before being used as a fuel: the conversion of U3O8 into UF6, the enrichment 

of natural uranium to increase its percentage of 235U from 0.7 wt. % to 3-5 wt. %, and the 

fabrication of nuclear fuel assemblies containing uranium pellets. These three steps are 

named the front end [14]. 

 

 
Figure 2: Nuclear fuel cycle [13]. 
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Once the fuel assemblies are produced, they are used in a reactor during approximately 

three years. Electricity is produced with the heat generated from the nuclear chain 

reaction. The most operated reactor worldwide is the pressurized water reactor (PWR). It 

represents 60 % of the total nuclear power plants in operation (265 PWR out of 439 

reactors worldwide) [15]. PWR is a type of light water reactor (LWR). 

2.1.1. Spent fuel 

The management of the irradiated fuel is referred to as the back end. Two options can be 

distinguished for the management of the used fuel: the open cycle and the closed cycle. In 

the open cycle the used fuel is a non-reusable waste which has to be stored and kept in 

places conceived to this end. In the closed cycle the spent fuel is recycled. Uranium and 

plutonium reprocessed from the final waste represent approx. 96 vol. % of the spent fuel. 

These elements can serve to produce the so-called MOX fuel which can be used as a new 

fuel in nuclear power plants [14]. Plutonium and the MA are long-lived radionuclides that 

are responsible for the long-term radiotoxicity. 

Composition of spent fuel 

The spent fuel composition four years after its discharge from PWR is shown in Table 2. 

The used fuel after a burn-up of 33 GWd/tHM is composed of 95.5 wt.% U, 0.97 wt.% 

Pu, 0.04 wt.% Np, 0.04 wt.% Am, 0.002 wt.% Cm and 3.374 wt.% fission products (FP). 

The content of Pu and MA (Np, Am, Cm) increases with the burn-up. 

 

Table 2: Spent fuel composition of UOX fuels as a function of burn-up (expressed per ton of initial 
heavy metal). Four years after discharge from PWR [16]. 
 

 Mass of each elements (kg) 

                Burn-up (GWd/tHM) 

Elements                                          
33  41  50  

U 955.20 945.00 935.00 

Pu 9.73 10.85 12.00 

Np 0.42 0.55 0.72 

Am 0.37 0.53 0.66 

Cm 0.02 0.06 0.11 

FP 33.74 42.25 51.30 
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2.2. Nuclear waste management strategies 

Two complementary strategies can be discussed in the framework of the closed cycle 

approach: the partitioning and transmutation (P&T) and the partitioning and conditioning 

(P&C) strategies. 

2.2.1. Partitioning and transmutation strategy 

The aim of the P&T strategy is the reduction of the long-term radiotoxicity of the final 

waste [17]. The partitioning is the chemical separation of different long-lived elements of 

the spent fuel. Currently, uranium and plutonium are separated from the spent fuel via the 

well-known PUREX (Plutonium and Uranium Recovery by EXtraction) process. In this 

process, the spent fuel is dissolved in nitric acid, and afterwards the separation of 

uranium and plutonium is achieved by the liquid-liquid extraction using tributyl 

phosphate (TBP) as an extractant [18; 19]. MA cannot be separated within the PUREX 

process, so that additional steps are used. The first step is the co-extraction of MA and 

lanthanides from High Level Liquid Waste (HLLW) (e.g. French DIAMEX process) 

[18]. The second step is the separation of MA from lanthanides (e.g. SANEX process) 

[20]. 

Then, the long-term radiotoxic elements are embedded into a stable matrix. The nuclides 

are transformed into one or several other nuclides (stable elements or short-term 

radiotoxic elements) in a reactor. It is the consequence of neutron-induces fission and 

capture reactions [21]. This process is called transmutation. 

Radiotoxicity 

Radiotoxicity is the radiation dose [Sv] per ton of spent fuel [22]. Figure 3 shows the 

ingestion radiotoxicity versus time of LWR fuel at a burn-up of 50 GWd/tHM. The 

reference level is represented by the horizontal line. It corresponds to the radiotoxicity of 

the quantity of natural uranium needed to produce one ton of fresh fuel with an 

enrichment of 4.2 % 235U. In order to analyze different P&T strategies, several cases are 

compared to the reference level: the open cycle (no P&T), a partial multiple recycling, 

and full multi-recycling. 

In the case of the open cycle (the “Total” curve on Figure 3), the spent fuel is directly 

sent to a long-term repository. The radiotoxicity reference level will be reached after 
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130 000 years. In the case of the closed cycle, three red curves on Figure 3 show the P&T 

strategy: 

- Multiple recycling of Pu (99.5 % efficiency) and one single recycling of Am (90 % 

efficiency) and Cm (90 % efficiency). The radiotoxicity reference level will be crossed 

after 1 500 years. 

- Full multiple recycling of Pu (99.5 % efficiency), Am (95 % efficiency) and Cm (95 % 

efficiency). The radiotoxicity reference level will be reached after 1 000 years. 

- Full multiple recycling of Pu (99.5 % efficiency), Am (99 % efficiency) and Cm (99 % 

efficiency). The radiotoxicity reference level will be reached after 500 years. 

The FP radiotoxicity (black bold curve on Figure 3) shows the theoretical limit to the 

radiotoxicity if all actinides would be partitioned and transmuted. In this case, the 

reference level would be achieved after 270 years. 

To conclude, the radiotoxicity of the spent fuel can reach the reference level after a time 

period between 500 and 1 500 years, instead of 130 000 years without P&T. This strategy 

permits the reduction of the long-term radiotoxicity of the final waste. 

 

 
Figure 3: Evolution of ingestion radiotoxicity of one ton of LWR spent nuclear fuel at a burn-up of 
50 GWd/tHM versus time. The horizontal line is the reference level: the quantity of natural uranium 
needed to produce one ton of fresh fuel with an enrichment of 4.2 % 235U, i.e. 7.83 t [21; 23]. 
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2.2.2. Partitioning and conditioning strategy 

The P&C strategy is an alternative to the P&T strategy. After the partitioning of the spent 

fuel, the separated radionuclides are embedded in a suitable matrix and disposed in a 

deep underground repository. The radiotoxicity of the waste is not reduced by the P&C 

strategy, but the synthesis of the adapted matrices for the immobilization of the 

radionuclides increases the safety of the final disposal. Indeed, the host matrix constitutes 

an additional barrier between the radionuclides and the biosphere. The radionuclides have 

to be kept within the amorphous or crystal structures over long time periods (up to one 

million years) [24]. Ceramic matrices are considered to be beneficial for this purpose, 

thanks to their chemical durability, their tolerance to the radiation, and their natural 

analogues that show stability. 

Safety case 

Before a geological disposal for nuclear waste receives an approval for the construction, 

its safety has to be demonstrated. The safety assessment and the safety case are defined 

by the Nuclear Energy Agency (NEA) as follows [25]: “Safety assessment is the process 

of systematically analyzing the hazards associated with the facility and the ability of the 

site and designs to provide the safety functions and meet technical requirements,” 

whereas “the safety case is an integration of arguments and evidence that describe, 

quantify and substantiate the safety, and the level of confidence in the safety, of the 

geological disposal facility.” The development of a repository has to be discussed and 

argued between the involved parties, and the issues need to be resolved with technical 

arguments. The dialogue about each decision is the key of the achievement of the safety 

[25]. 

 

2.3. Nuclear waste forms for the P&C strategy 

The P&C strategy requires the development of the host matrices for radionuclides. 

Glasses and ceramics present the well-known waste forms [2]. This section briefly 

describes glasses and considers the properties of the ceramic materials as host matrices in 

more detail. As it was mentioned above (see section 2.1.1), plutonium and the MA 

mainly govern the long-term radiotoxicity of spent fuel. Whereas the research on the 
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conditioning of Pu has already been covered in the numerous articles [26-31], the 

literature on the conditioning of MA is scarcer. 

2.3.1. Glasses 

Research on glass waste forms was realized in the last decades in the nuclear waste 

management field [32]. In some countries such as France, borosilicate glasses became the 

reference host for nuclear waste [33; 34]. Borosilicate glass can incorporate many 

different chemical elements (high chemical flexibility), has a low surface-to-volume 

ratio, its fabrication process is simple and feasible at industrial scale [2]. Besides these 

advantages, the major inconvenience of glass is its metastability. It has to be taken into 

account for the establishment of a model of a deep geological formation for long periods 

of time [2]. As crystalline materials are more stable than amorphous materials, ceramics 

that do not tend to be metamict are considered as promising alternative hosts for high-

level waste. 

2.3.2. Ceramics 

Several reviews outline the benefits of ceramic waste forms compared to glass waste 

forms [28; 30; 35]. Table 3 summarizes relevant characteristics of different ceramic 

materials, in relation to the conditioning of radionuclides. Except for the existence of 

natural analogues, characteristics are rated as low, medium, and high: aqueous durability, 

radiation tolerance, chemical flexibility, and waste loading [8]. The most relevant 

properties are aqueous durability and radiation tolerance. Both features will be described 

in detail (see sub-sections 2.3.2.1 and 2.3.2.2). The chemical flexibility represents the 

ability of a host phase to incorporate different chemical elements. The analysis of natural 

analogues gives an approximation of the properties that can be expected from synthetic 

host phases. The stability over geological times can only be evaluated with natural 

analogues. 

On the basis of these information, Zr- and Ti-based pyrochlores, zirconolite, monazite, 

apatites and murataite-type ceramics are considered to be serious candidates among the 

crystalline materials [8; 36].  
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Table 3: Summary of the performance characteristics of individual phases measured against 
potential selection criteria and other means of evaluation (e.g. natural samples) [8]. 

 
Aqueous 

durability 

Radiation 

tolerance 

Chemical 

flexibility 

Natural 

analogues 

Perovskite Low Medium Medium Yes 

Pyrochlore High Low-high High Yes 

Zirconolite High Low-medium High Yes 

Zircon High Low Medium Yes 

Monazite High High Medium Yes 

Zirconates High High Medium No 

Zirconia High High Medium No 

Brannerite Medium Low Medium Yes 

Crichtonite ? Low (?) High Yes 

Murataite High Medium High Rare 

Garnet ? Low High Yes* 

Titanite Medium Low Medium Yes 

Apatite group Medium Low Medium Yes 

Kosnarite Medium Low Medium Yes 

*Natural garnets typically do not contain substantial amounts of Th or U. 

 

However, some statements are also verified for crystalline waste forms in general. Their 

main advantages over glass are the incorporation of the radionuclides in well-defined 

atomic positions within the crystal lattice, a higher resistance to self-irradiation and a 

higher aqueous durability [37]. In addition, ceramics can also incorporate neutron 

absorbers (e.g. Hf and Gd [38]) to minimize the criticality issue, and the stability of 

crystalline compounds gives fixed thermodynamic data permitting the establishment of a 

model for their long-term behavior in a repository [2]. 

The goal of the P&C strategy is to find the matching matrix for each radionuclide. This 

goal implies a long-term research agenda, but this research would contribute to the 

general objective of the improving of the nuclear waste management safety. In the 

present work, monazite-type ceramics (REPO4, with RE = La - Gd) have been 

investigated as potential host material (see chapter 2.6). 
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2.3.2.1. Aqueous durability of ceramics 

The chemical durability of a sample can be analyzed with so-called aqueous alteration 

experiments. These investigations are performed in order to determine the dissolution rate 

of a sample immersed during a given period of time in a solution relevant for simulating 

repository conditions. In the framework of these experiments, the elementary 

concentration in the solution (release of elements in the leachate) [39] or the weight loss 

of the sample are measured. In addition, microstructural investigations are necessary, e.g. 

to observe possible formation of secondary phases. 

As dissolution rates of most crystalline waste forms are low, the experimental conditions 

have to be adapted. To this end, powdered samples instead of monolithic ones are favored 

to increase the surface to mass ratio (measured in m2·g­1). In addition, the detection of 

such low concentrations in the solutions can only be detected by remarkable analytical 

methods having a very low detection limit (e.g. ICP-MS, see section 3.1.11). 

Dissolution tests can be performed by static as well as dynamic methods: samples are 

immersed in a fixed volume of leachant for a static test, and leachant flow or regular 

replacement of leachant is used during a dynamic test. 

The most common methods were classified in five kinds of tests (MCC­1 to MCC­5) by 

the International Standards Organization’s Materials Characterization Centre (MCC, 

Battelle Pacific Northwest Laboratory, USA), showing the wide difference of leaching 

test methods used [32]: 

• MCC-1: small volume of leachant without any agitation at 40 °C, 70 °C or 90 °C, 

• MCC-2: test MCC-1 performed at higher temperature (110 °C, 150 °C and 190 °C), 

• MCC-3: powdered samples, fixed ratio of leachant volume to samples mass, at 

temperature between 40 °C and 190 °C, 

• MCC-4: single-pass flowing conditions, 

• MCC-5: well-known Soxhlet test [32]. 

Some of these methods were chosen by the American Society for Testing and Materials 

(ASTM) as standard tests [40]. 

Results obtained in this work should be compared with values found in the literature, e.g. 

with the work of Oelkers and Terra [41; 42]. However, even if interest in the ceramics as 

host phases has grown in the last decades, data about the corrosion behavior are quite 



2. Background 

15 

limited so far. In addition, the existing data are not always directly comparable, due to 

diverse synthesis routes employed and/or different experimental conditions, for example 

due to the choice of the MA surrogate. 

2.3.2.2. Radiation tolerance of ceramics 

Radiation tolerance is required for crystalline materials pretending to be good candidates 

as nuclear waste forms. Radionuclide-containing ceramics are damaged by the radiation 

issued from the radioactive decays. This process is referred to as self-irradiation. As 

shown in Table 3, the radiation tolerance of ceramics is not equal for all host phases: e.g. 

monazite, zirconates and zirconia are known for their high resistance, whereas zircon, 

brannerite and apatite are low-resistant. 

In order to simulate these damages at a laboratory scale and to define the radiation 

tolerance of a material with an appropriate technique, two different kinds of methods are 

used. The first and most realistic method is to dope the ceramic matrix with radionuclides 

and to study the damages. This approach requires handling these radioactive samples, 

what can cause problems for some analytical methods [32]. The second method is to 

simulate the inner irradiation by means of external bombardment of the matrix with ions, 

neutrons or electrons. In the literature, radiation tolerance tests on monazite-type 

ceramics are found for both methods. For example: synthesis of Pu-doped monazite [43], 

or ion bombardment (Au, He, Kr, Ar) at high energies (800 keV to 7 MeV) of natural and 

synthetic monazite [44-48]. 

The damage created by the self-irradiation is mainly due to the alpha-decay of actinides. 

The decay is composed of the alpha particle (He) and the recoil of the nucleus. The alpha 

particle (4.5 to 5.5 MeV) causes ionization as well as Frenkel defects. These defects 

result from an ion displaced from its lattice position to an interstitial site, creating a 

vacancy defect at its original site and an interstitial defect at its new site. Whereas the 

alpha recoil (70 to 100 keV) creates a collision cascade with the neighboring ions, 

causing the most localized structural damages. This causes the amorphization process, 

known as metamictization [49]. The critical amorphization temperature Tc of the material 

has to be taken into account for the planning of radiation tolerance tests. It represents the 

temperature above which the material cannot be amorphized anymore [50] and it 
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corresponds to the temperature at which the material recrystallizes after an amorphization 

process. Figure 4 shows the critical amorphization dose as a function of temperature for 

RE-orthophosphates in monazite structure or zircon structure. 

The critical amorphization temperature Tc equals 60 °C for La-monazite, which is the 

lowest value among monazite-type crystals [50]. As a result, La-monazite recrystallizes 

at relatively low temperature (60 °C), which is a good property for a candidate as host 

matrix for radionuclides. Indeed, self-irradiation in La-monazite may induce damages in 

the structure, but the recrystallization will occur eventually. 

After having induced radiation damages, the next step is their characterization. Several 

methods are suggested in the literature, for example the transmission electron microscopy 

(TEM) [51], the nuclear magnetic resonance (NMR) [49], and Raman spectroscopy [45]. 

 

 
Figure 4: Critical amorphization dose versus temperature of REPO4 ceramics. The arrows marked 
with an m indicates the range of Tc values for the monazite structure and the ones with a z those for 
the zircon structure [50].  
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2.4. Lanthanides and actinides chemistry 

Lanthanides are often used on a laboratory scale as actinide surrogates. Due to their 

electronic configurations, trivalent lanthanides have similar properties to trivalent 

actinides without being radioelements (besides promethium). Furthermore, as monazite is 

a mineral containing lanthanides (e.g. Ce and La) and actinides (Th, U), their properties 

are of importance for the understanding of the behavior of this waste form. 

With regard to the samples synthesized in this work, the properties of lanthanum, 

europium and curium will be discussed in detail. The fluorescence properties of europium 

and curium will be outlined in the section 2.5.1. 

 

2.4.1. Lanthanide chemistry 

Lanthanides are found abundantly in the earth’s crust. Nevertheless, they have been 

considered as rare in the past, so that these elements are mentioned as “rare-earth” (RE). 

As many actinide properties are similar to lanthanide properties, actinides are often 

referred to as the actinide rare-earths [52]. 

The lanthanides (Ln) are the 14 metals situated after the lanthanum (La, Z = 57) in the 

periodic table, from Ce (Z = 58) to Lu (Z = 71). They are so-called “4f-metals” as their 4f 

orbitals are partly or fully filled with electrons (see Table 4). Yttrium (Z = 39) and 

lanthanum (Z = 57) are often considered as lanthanides as they are linked to them due to 

similarities (e.g. the oxidation state). As a matter of fact, these elements usually found 

together with the lanthanides in nature [52]. In the following, La will be considered as a 

lanthanide. 
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In general, lanthanides show notable differences when they are in metal phases. The plot 

of the atomic radius versus the atomic number (see Figure 5) shows clearly that the radius 

values of Eu (rAt = 199.5 pm) and Yb (rAt = 194.0 pm) are much higher than the others 

(between rAt = 171.8 pm for Lu and rAt = 187.0 pm for La). This particularity leads to 

repercussion on other properties of these lanthanides: Eu and Yb are the two minima in 

the melting point curve as well as in the density curve of the lanthanides [54]. Another 

distinction between lanthanides is the high difference of the melting point of cerium 

(Tm = 798 °C) and lutetium (Tm = 1656 °C) [54]. 

The oxidation state of lanthanides is generally +III. Nevertheless, some lanthanides can 

be reduced to +II (Sm, Eu, Tm and Yb) and some can be oxidized to +IV (Ce, Pr, Nd, Tb, 

Dy). However, all lanthanides are mostly trivalent in aqueous solution, whereas Eu (II) 

and Ce (IV) are metastable. Contrary to the case of metals, the lanthanide properties are 

alike in solution and they are difficult to separate from each other. Figure 6 shows the 

effective ionic radius of Ln3+ versus the atomic number of the lanthanides, in case of a 

coordination number (CN) equals nine (red plot) and equals eight (blue plot). Indeed, 

non-hydrated lanthanide orthophosphates (LnPO4) can show two different crystal 

structures, monazite-like and xenotime-like, depending on the size of the cation. For 

Ln = La - Gd, the cation is surrounded by nine oxygen, whereas for Ln = Tb - Lu, the 

cation is surrounded by eight oxygen. Nevertheless, Eu, Gd and Tb can actually be found 

in both structures (see section 2.6.2). 

Figure 6 shows that Ln3+ ions are getting smaller as Z grows: this is the lanthanide 

contraction, an aperiodic property of the lanthanides. This contraction is due to the 

4f­electrons. As the f orbitals are diffuse, their electrons are less located, which leads to a 

poor shielding of the nuclear charge. As a result the 6s­electrons are stronger attracted to 

the nucleus and the radius is decreasing from La3+ to Lu3+ [53; 55]. 
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The preferential CN of La are eight and nine (e.g. CN = 8 in xenotime-type ceramics and 

CN = 9 in monazite-type ceramics and [La(H2O)9]
3+). Complexes with CN smaller than 

eight or higher than nine can also occur (e.g. CN = 12 in La2(SO4)3
.9H2O). 

 

2.4.1.2. Europium chemistry 

Eu occurs as two isotopes in nature: 151Eu (47.8 %, unstable) and 153Eu (52.2 %, stable). 

29 other synthetic radioisotopes are referenced (from 130Eu to 162Eu) [53; 57]. 

Eu is the most reactive lanthanide [53]. Just as La, Eu is a strong reducing agent for water 

and acids. In both reactions a formation of H2 is observed. At high temperatures, Eu 

burns under the formation of Eu2O3. The sesquioxide is soluble in acids and forms a 

hydrate ([Eu(H2O)9]
3+). 

Like the other lanthanides, Eu (4f7 6s2) is usually trivalent (4f6) but it can also be divalent 

(4f7), which is not common for the lanthanides. Indeed, Eu2O3 can be reduced to the 

mono-oxide EuO. This is due to the electron configuration 4f7 that has a half-filled f-shell 

procuring more stability than the electron configuration 4f6. 

 

2.4.2. Actinide chemistry 

The actinides (An) are the 14 metals following actinium (Z = 89) from thorium (Z = 90) 

to lawrencium (Z = 103). Every actinide isotope is radioactive and only U, Th, and 

primordial 244Pu are found in nature. Like La for the lanthanides, Ac gave its name to the 

actinides and is also often referred to as an actinide. In the following, Ac will be 

considered as an actinide. 

Their properties are comparable to these of the lanthanides due to the similarity of their 

electronic levels. Besides the thorium, the 5f level of actinides is partly or completely 

filled with electrons (see Table 5 [53]). Just as the Ln3+ contraction, the An3+ contraction 

is observed for the actinide radii measured until now (from 126 pm for Ac3+ down to 

109 pm for Cf3+) [53]. 
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Table 5: Electronic configuration and oxidation state (the most stable are bold) of the actinides [53]. 

Atomic 

Number 

Z 

Name Symbol 

Electronic 

Configuration 

Atom 

Oxidation 

State 

89 Actinium Ac 6d1 7s2 3 

90 Thorium Th 6d2 7s2 3, 4 

91 Protactinium Pa 5f2 6d1 7s2 3, 4, 5 

92 Uran U 5f3 6d1 7s2 3, 4, 5, 6 

93 Neptunium Np 5f4 6d1 7s2 3, 4, 5, 6, 7 

94 Plutonium Pu 5f6 7s2 3, 4, 5, 6, 7 

95 Americium Am 5f7 7s2 2, 3, 4, 5, 6 

96 Curium Cm 5f7 6d1 7s2 3, 4 

97 Berkelium Bk 5f9 7s2 3, 4 

98 Californium Cf 5f10 7s2 2, 3, 4 

99 Einsteinium Es 5f11 7s2 2, 3 

100 Fermium Fm 5f12 7s2 2, 3 

101 Mendelevium Md 5f13 7s2 2, 3 

102 Nobelium No 5f14 7s2 2, 3 

103 Lawrencium Lr 5f14 6d1 7s2 2, 3 

 

Water or alkaline solutions do not attack actinide metals. However, boiling water creates 

an oxide-coating on the surface of the metal and acids dilute them more or less 

completely with H2 and An-cations formation [53]. From Z = 95 (Am) to Z = 103 (Lr), 

the most stable oxidation state is +3. The An3+ fluoride, hydroxide and oxalate are 

insoluble in water, whereas An3+ chloride, bromide, iodide, nitrate and sulfate are soluble 

in water [53]. 

As presented in Table 5, Cm can show a valence +III or +IV. Cm valence is mainly +III 

in solution. Cm (III) can be synthesized by the oxidation of Cm metal (e.g.: dissolution in 

acid). As Cm (IV) is a very strong oxidizing agent, it oxidizes water to O2 under the 

formation of Cm (III). Here, La-monazite was doped with 248Cm, which has a half-life of 

3.48 x 105 years [58].  
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2.5. Spectroscopic methods 

Long-range order methods like X-ray diffraction (XRD) are used to define the structure 

of a crystalline sample. Short-range order methods, like time resolved laser fluorescence 

spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS), 

investigate qualitatively and quantitatively the local environment of elements in a given 

structure within a sample (in solution and solid state). 

Short-range order spectroscopy permits the molecular level understanding of ceramic 

waste forms. TRLFS (emission) and EXAFS (absorption) measurements are 

complementary methods and contribute to a better understanding of the incorporation 

mechanism of dopant elements. 

 

2.5.1. Time resolved laser fluorescence spectroscopy 

2.5.1.1. Difference between fluorescence and phosphorescence 

The luminescence spectroscopy can be used to explore the coordination chemistry of the 

lanthanides and actinides ions [59]. 

In some chemical elements, after the absorption of energy (excitation) and due to certain 

electronic transitions, electrons emit their energy excess as light (relaxation). This is 

called luminescence. The emanated light is a function of the local environment of the 

atom, i.e. of the coordinated ligands. In order to interpret the spectrum, knowledge about 

electronic configuration of the ions and quantum physics selection rules is required [60]. 

A diagram of electronic transitions, named Jablonski diagram, illustrates the processes 

that usually happen within a fluorophore, between the absorption and the emission of 

light (see Figure 7) [61]. S0 is the singlet ground state, S1 and S2 are the first and second 

singlet excited states, Sn the nth excited state. The vertical arrows represent the electronic 

transitions occurring during absorption or emission of photons. 
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Figure 7: Jablonski diagram (modified from [62]). 
 

Due to light absorption, an electron of a fluorophore is excited to a high vibrational level 

Sn (blue arrows on Figure 7). Then, it rapidly relaxes to the lowest energy level of the 

excited state S1 by dissipating a part of its energy in its environment. This phenomenon is 

called internal conversion and occurs in 10-12 s or less. 

Several processes may occur during the relaxation of the electron from S1 to the ground 

state S0, two of them are schematically represented on Figure 7. 

The electronic relaxation from the excited state S1 to the ground state S0 can occur 

through emission of a photon. This is called fluorescence (red arrows on Figure 7). The 

relaxation can also follow a different route. Electrons at the excited state S1 undergo first 

a spin conversion to the first triplet state, T1 (excited state). Conversion of S1 to T1 is 

called intersystem crossing (ISC). The relaxation of the molecules from the lowest energy 

level of T1 to the ground state S0 occurs via emission of a photon (shifted to longer 

wavelengths relative to fluorescence). This phenomenon is called phosphorescence 

(yellow arrows on Figure 7) [63]. 

As a result, the difference between phosphorescence and fluorescence is related to the 

time needed by the excited electron to return to its ground state. In the case of 

fluorescence, an almost instant return is observed, whereas in the case of 

phosphorescence this process can last up to hours [64]. 
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According to the definition of the different luminescence processes, the following work 

describes phosphorescence processes. However, the luminescence of Eu (III) and 

Cm (III) is mostly referred to as fluorescence. This convention will also be applied in this 

work. 

 

2.5.1.2. Elements with fluorescence ability 

The electrons of the ions Cm (III), Eu (III), Am (III) and U (VI) are able to relaxate from 

an excited state into the ground state by fluorescence. Therefore, these elements are 

suitable dopants for TRLFS measurements. 

Here, europium was chosen as surrogate for trivalent actinides and curium as trivalent 

actinide for doping the monazite-type crystal structure. Two monazite-type samples 

doped respectively with europium and curium were measured. However, doping a 

ceramic with one element does not imply that all dopant atoms have the same local 

atomic environment, even if they are in the same oxidation state. In a sample with a 

unique doping element, several species, i.e. with different atomic neighbors, can be 

found. For a good comprehension of the results, the most simple case will be explained: 

the case of an ion surrounded just by water molecules, an aquo ion called free ion. 

The chemical properties of both europium and curium have already been discussed in the 

previous chapter (2.4). Their fluorescence characteristics will be given in the subsequent 

section. 

Curium 

The sensitivity of TRLFS for Cm (III) is very high and it is a major advantage for the 

experiments. The detection limit was determined experimentally in 0.1 mol·L-1 HClO4 to 

be 5.5·10-12 mol·L-1 [65]. Speciation information can be obtained below 1 ppm, as a 

concentration only about 10­9 to 10­7 mol·L-1 is needed [65]. 

Figure 8 represents the energy levels of a free Cm ion excited by UV light 

(λ = 396.6 nm). There is a non radiative relaxation to level 6D7/2. The electrons relaxing 

from level 6D7/2 to the ground state 8S7/2 emit photons, with a wavelength λ = 593.8 nm. 
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Figure 8: UV excitation of a free curium ion [66]. 
 

 

As mentioned above (see sub-section 2.5.1.2), different local environments can lead to 

different Cm species in the same compound. With UV excitation (λ = 396.6 nm), all Cm 

species are simultaneously excited. 

Figure 9 is a graph of the curium fluorescence emission versus the wavelength λ (nm) of 

three Cm species. The first peak corresponds to a Cm (III) aquo ion, showing its emission 

maximum at λ = 593.8 nm (transition from 6D7/2 level to 8S7/2 level). According to [67], 

the second and third peaks correspond to two Cm (III) species sorbed onto a calcite 

sample, showing emission maxima respectively at λ = 607.5 nm and λ = 618.0 nm. 

Compared with the aquo ion, the peaks are shifted to higher wavelength, this is called a 

red shift. 

The neighbors of the ion strongly influence the spectroscopic properties. The stronger the 

complexation, the longer the wavelength of the emitted light. Figure 9 shows that the 

Cm (III) species sorbed onto calcite have a stronger complexation with the neighbor 

ligands than the free Cm (III) ion with the water molecules.  

Nonradiative relaxation

A = 6D7/2

Emission λ = 593.8 nm
Lifetime 1.3 ms

Z = 8S7/2

Excitation λ = 396.6 nm

Nonradiative relaxation

A = 6D7/2

Emission λ = 593.8 nm
Lifetime 1.3 ms

Z = 8S7/2

Excitation λ = 396.6 nm
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Figure 9: Fluorescence emission spectra of Cm (III)    aquo ion, Cm (III)/calcite sorption species 1 and 
Cm (III)/calcite sorption species 2 [67]. 
 

 

Europium 

Europium was chosen as surrogate for trivalent actinides. The ground state is split in 

seven levels: 7FJ with J ϵ [0, 6] (see Figure 10) and each level (7F0-6) can be splitted in 

2J+1 levels, according to the surrounding ligands. 

The fluorescence of Eu (III) almost always occurs from the first excited level 5D0 to the 

ground state. The peaks observed in the spectra correspond to the transitions from 
5D0�

7FJ. The most interesting transitions are from 5D0 to 7F0, 
7F1 and 7F2 [60]. The 

transition 7F0�
5D0 is particularly useful for the interpretation of the excitation spectrum 

of Eu (III) ions. The ground state (7F0) and the excited state (5D0) are both non-

degenerate, as a consequence each Eu (III) specie presents a single peak in the excitation 

spectrum. The total number of Eu (III) species in a sample can be identified accordingly. 
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Figure 10: Energy levels of Eu (III) in the visible spectrum [68]. 
 

 

This transition has a low intensity. Indeed, the 0-0 transition is forbidden by electronic 

rules and even by symmetry selection rules if a Eu (III) ion has a high symmetry 

environment or a center of inversion is present. As a result, the intensity of the 0-0 

transition can be used to estimate the grade of the symmetry of Eu (III) [59; 60]. 

The energy levels of a free Eu (III) ion excited by UV light (λ = 394 nm) are shown on 

Figure 11. After the absorption of light (7F0 � 5L6 transition), a non-radiative relaxation 

to level 5D0 occurs. The electrons relaxing from level 5D0 to the ground state emit 

photons at different wavelengths due to the splitting of the ground state. 

Figure 12 shows a graph of the Eu (III) fluorescence emission versus the 

wavelength (nm) of a free Eu (III) ion. The sample is excited by UV light and the peaks 

of the first four levels (7F0 to 
7F3) are shown. Compared to the spectrum of a free Cm (III) 

ion (Figure 9), the spectrum of a free Eu (III) ion is less trivial as it has several peaks. In 

the case of a non-free ion, Eu (III) as well as Cm (III), all species would be excited 

simultaneously with UV light. 
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Figure 11: Energy levels of a free Eu (III) ion excited by UV light [66]. 
 

 
Figure 12: Eu (III) fluorescence emission versus the wavelength (nm) of a free Eu ion (partly [60]). 
 

 

Figure 13 shows the energy levels of a Eu (III) species. Different species can be excited 

individually in an energy range between 577 nm and 583 nm, because the energy gap 

between 7F0 and 5D0 is different for each species. This is called a direct excitation. The 

seven levels of the ground state will occur in the spectrum of a measurement realized by 

direct excitation, as they are inherent in Eu.  
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Figure 13: Energy levels of a free Eu ion excited by direct excitation [66]. 
 

2.5.1.3. Fluorescence lifetime 

As mentioned above (see sub-section 2.5.1.1), after the absorption of photons, a 

fluorophore remains in an excited state during a given time before the relaxation. The 

mean time spent by the molecules in the excited state is called fluorescence lifetime. 

Graphs representing lifetime measurements show fluorescence emission versus time (µs) 

[63]. 

As an example, Figure 14 shows a scheme of lifetime measurements of two Cm (III) 

samples, a free Cm (III) ion (black) and a Cm (III) ion incorporated in calcite (red). These 

plots can be analyzed qualitatively. Both are decreasing because of the relaxation of the 

electrons from the excited state to the ground state. The plot of the free Cm (III) ion 

shows one slope, meaning the sample is composed of a single species. Whereas the plot 

of the Cm (III) ion in calcite shows two different slopes, meaning the sample is here 

composed of two species. 

These graphs (Figure 14) can also be analyzed quantitatively as the lifetime is influenced 

by quenching. The main quenching effect observed in aqueous systems is the relaxation 

due to the OH oscillation bands. The process is shown Figure 15. During the relaxation of 

the excited electron, the OH-molecules absorb energy (energy transfer) which induces a 

faster return of the electron to the ground state. 
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Figure 14: Lifetime measurements: Cm (III) fluorescence emission versus the time (µs) 
of a free Cm (III) ion (black) and a Cm (III) ion in calcite (red) [66]. 
 
 

 
Figure 15: Scheme of the radiationless relaxation of Cm (III) via OH-vibration (modified from [60]). 
 

The effectiveness of the quenching is related to the distance between the ions: if this 

distance is too long, the quenching effect is insignificant. The impact of the second 

coordination sphere can then be assumed to be negligible. On the basis of this 

assumption, Horrocks Jr. developed an empirical equation in 1979, by correlating the 

number of water molecules (n (H2O)) in the first coordination sphere of a europium ion 
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and the fluorescence lifetime (see equation ( 1 )). Fifteen years later, Kimura developed a 

similar equation by correlating the number of water molecules in the first coordination 

sphere of a curium ion and the fluorescence lifetime (see equation ( 2 )). The typical error 

of both the Horrocks and the Kimura equations is ± 0.5 (H2O). 

[69] n (H2O) = 1.07 kobs – 0.62 ( 1 ) 

[70] n (H2O) = 0.65 kobs – 0.88 ( 2 ) 

Where kobs is the decay constant (m·s-1). 

 

2.6. Monazite 

2.6.1. Structure, composition and occurrence 

Monazite is a phosphate discovered by Johann August Friedrich Breithaupt. In 1829 he 

reported on monazite for the first time [71]. Breithaupt claimed that this mineral was 

found in a zircon- and iron-ore in Siberia and described it in German as “ein 

ausgezeichnetes Einzelwesen”. The term “ monazite” has its etymological origins from 

the Greek µονάζειν (meaning “to be alone”) because of its crystals standing alone in the 

rock [71]. 

Monazite (REPO4) is a monoclinic orthophosphate composed of REO9 polyhedra and 

PO4 tetrahedra (see Figure 16). RE is surrounded by nine oxygen. Each oxygen is 

positioned at a different distance (between 2.484 Å and 2.813 Å) [72]. 

Its quantitative chemical composition is given in Table 6 [55]. The mineral is composed 

of different rare-earths: Ce, Y, La, Nd, Th and Pr. Furthermore, natural monazite 

discovered in Piona (Italy) contained a very high amount of actinides: 11.34 wt.% of 

ThO2 and even 15.65 wt.% of UO2 [73]. These high contents make monazite one of the 

principal sources of rare-earth metals together with bastnaesite [55]. Besides Italy, the 

mineral occurs in beach sands from Brazil, India and Australia [74]. 

The stability domains regarding the temperature of the system La2O3-P2O5 is described 

on the phase diagram on Figure 17. It contains the following compounds: La5PO10, 

La3PO7, LaPO4, La(PO3)3 and La5PO14 [75]. According to Kropiwnicka, LaPO4 has a 

melting point higher than 2200 °C. However, in the work of Hikichi, the melting 

temperature of La-monazite is found to be 2072 °C ± 20 °C [76], which is a higher value 
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than the one of Al2O3 (2050 °C) [77]. LaPO4 has no “domain” of stability on its own. 

However, at 30.35 wt.% of P2O5 (corresponding to 1:1 molar ratio), LaPO4 is the only 

stable component. At a La-richer molar ratio, LaPO4 has a stability domain together with 

La3PO7 up to 1580 °C (marked in red on the diagram). The structure of La3PO7 is like a 

stack of La2O3 and LaPO4 structures [78]. 

 

 

Table 6: Chemical composition of natural monazite [79]. 

Wt.% Ce2O3 Y2O3 (La,Nd)2O3 Fe2O3 ThO2 P2O5 (Pr,Y)2O3 

Min. 21.1 1.15 27.9 0.1 5.65 24.9 0.5 

Max. 34.0 4.66 41.8 1.5 12.0 29.7 2.2 

 

 

 

 
Figure 16: Crystal structure of LaPO4. 
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Figure 17: Phase diagram of La2O3 – P2O5 [75]. The red part corresponds to the composition of the 
La-monazite synthesized here. 
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2.6.2. Monazite versus xenotime 

As shown in Table 6, the monazite mineral is composed mainly of light rare earths. If 

composed by heavy rare earths, which are smaller ions, the symmetry within the REPO4 

mineral is different. The mineral is named a xenotime and its crystal structure shows a 

tetragonal symmetry [79], isostructural to the mineral zircon (ZrSiO4) [80]. Figure 18 

shows which structure preponderates in natural phosphates with regard to the rare earths. 

Minerals with lanthanides between La and Eu show principally a monazite structure, 

whereas minerals with lanthanides from Gd up to Lu show a xenotime structure. 

In the continuation of the work, synthetic REPO4 ceramics will be named after their 

natural mineral analogues: monazite for RE = La - Gd (monoclinic structure) and 

xenotime for RE = Tb - Lu and Y (tetragonal structure). Both monazite and xenotime 

have hydrated forms: rhabdophane and weinschenkite respectively. 

 

 
Figure 18: Rare earth abundances in coexisting monazite and xenotime, normalized to average 
chondrite mineral [79]. 
 

2.6.3. Synthesis methods 

Several methods can be used to synthesize monazite samples. The most common 

methods are the solid state reaction [81], the hydrothermal synthesis [82], the 

precipitation [83] and the sol-gel method [84]. 
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In the present work hydrothermal synthesis was chosen as synthesis method, as it is an 

almost dust-free route. This is of great interest when handling radioelements. Another 

advantage of this method is the very low temperature applied for the hydrothermal 

synthesis (200 °C). The method will be outlined in the section 3.1.2. 

Once the synthesis route is adopted, tests have to be performed with surrogates before 

doping the matrix with radioactive elements. Here, the surrogates are lanthanides, as their 

properties are similar to the properties of the actinides (see chapter 2.4). Doped REPO4 

ceramics can contain up to 100 mol% of actinide in the RE-position, for RE = Pu - Es 

[85]. 

 

2.6.4. Monazite as a host phase for actinides 

The concept adopted in this work is the biomimicry. The functioning of natural processes 

is observed and mimicked, as these processes already demonstrated their advantages in 

nature. This concept already shows advantages in many scientific areas [86-88]. 

In long-term repositories for HAW, an intrusion of water over the years is the worst-case 

scenario. Optimal host matrices have to be stable while being in contact with aqueous 

solutions. As already mentioned (section 2.6.1), monazite is a mineral found in beach 

sands from different countries (Brazil, India, Australia, etc.), thus it is chemically durable 

with regard to aqueous alteration processes [37]. Table 7 gives the dissolution rates of 

Manangotry monazite found by Oelkers [41]. The chemical formula of this natural 

monazite is as follows: 

(Ca0.04La0.21Ce0.43Pr0.05Nd0.15Sm0.02Gd0.01Th0.13)P0.90Si0.09O4. 

The dissolution rates r (Ce) given in Table 7 correspond to the release of Ce into leachate 

at pH = 2. The concentration of Ce was determined by ICP-MS. The dissolution rate is 

comprises between 5.23·10­6 g·m­2·d­1 at 50 °C and 1.49·10­3 g·m­2·d­1 at 200 °C, thus it 

increases with the temperature. 

The lanthanide orthophosphates exist in nature and contain usually a significant amount 

of thorium and uranium, but have been found to be weakly metamict [37; 89]. This 

suggests that the structure is resistant to radiation damage and allow the incorporation of 
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radionuclides. A more than three-billion-years old monazite mineral was discovered in 

Australia, which proves its stability over time [90].  

Because of these characteristics, monazite appears to be a perfect candidate for further 

research concerning its ability to serve as host matrix for the conditioning of MA. 

 

Table 7: Steady state natural Manangotry monazite dissolution rates obtained by Oelkers [41]. 
 

pH Temperature (°C) r (Ce) (g·m-2·d-1) 

2.03 50 5.23·10-6 

2.02 70 1.33·10-5 

1.97 150 1.28·10-4 

2.00 200 1.49·10-3 
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3. Experimental part 

3.1. Chemicals, methods and apparatuses 

3.1.1. Chemicals 

Lanthanum nitrate:  La(NO3)3·6H2O, Sigma-Aldrich, 99.99 % pure 

Europium nitrate:  Eu(NO3)3·6H2O, Alfa Aesar, 99.9 % pure 

Lanthanum oxide:  La2O3, Alpha Aesar, 99.99% pure 

Europium oxide:  Eu2O3, Alpha Aesar, 99.99% pure 

Sodium hydroxide:  NaOH, Merck, ≥ 98 % pure 

Diammonium hydrogen phosphate:  (NH4)2HPO4, Merck, ≥ 99 % pure 

Nitric acid:  HNO3, Merck, 65 % pure 

Magnesium dichloride:  MgCl2·6H2O, Merck ≥ 99.0 pure 

Hydrochloric acid:  HCl, Fluka, 32 % 

Sodium chloride:  NaCl, Merck, ≥ 99.5 % 

 

3.1.2. Synthesis of monazite-type powder 

Monazite-type ceramic samples REPO4 were prepared by hydrothermal synthesis at 

200 °C. This synthesis route partly followed the route described by Meyssamy et al. [82]. 

The proportions in mmol and mL are given for a total of 250 mL solution. 

La(NO3)3·6H2O (30 mmol) was dissolved in water (50 mL, solution #1) and poured into 

NaOH (100 mL, 1 mol·L-1, solution #2). Afterwards, an aqueous solution of (NH4)2HPO4 

(27 mmol or 30 mmol in 100 mL water, solution #3) was added. The mixture was 

adjusted to pH = 12.5 using NaOH (4 mol·L-1) and poured into a Teflon beaker. The 

sample was heated up to 200 °C and this temperature was kept for two hours. 

For technical reasons, the heat treatment at 200 °C was carried out within three different 

apparatuses: in a 35 mL Teflon beaker of a simple stainless steel autoclave (see Figure 19 

left), in a 220 mL Teflon beaker of a PARR Instrument GmbH autoclave (see Figure 19 

right) or in a 120 mL Teflon beaker of a MLS GmbH microwave.  
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Table 8: Comparison of the working conditions of the PARR autoclave and the MLS microwave 

PARR autoclave MLS microwave 

- From RT to 200 °C in 50 min 

- 120 min-stay at 200 °C 

            Pressure: 10 to 15 bar 

- From 200 °C to 75 °C in 120 min 

- From RT to 100°C in 5 min 

- From 100 to 200°C in 7 min 

- 120 min-stay at 200 °C 

- 25 min cooling 

 

The resulting suspension was centrifuged. In order to dissolve lanthanum hydroxide 

formed by the excess lanthanum ions under the hydrothermal treatment, the precipitate 

was suspended in HNO3 (100 mL, 0.1 mol·L-1) and stirred for three days. LaPO4 is not 

soluble in dilute acids. The pH value of the suspension was readjusted to 1.0 with HNO3 

(1 mol·L-1). The white suspension was centrifuged. Next, the precipitate was washed with 

distilled water and dried at 95 °C over night. The reaction during the synthesis is as 

follows: 

 La(NO3)3·6H2O + (NH4)2HPO4 � LaPO4 + HNO3 + 2NH4NO3 + 6H2O ( 3 ) 

 

 

  
Figure 19: Simple autoclave composed of four components and the Teflon beaker with its top (left) 
and PARR autoclave with the pressure gage, the heater and the controller (right). 
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Doping 

La-monazite samples were doped with a few ppm of Cm (III) and with Eu (III), 

respectively. The Eu content was 5 mol%, 20 mol%, 35 mol%, 50 mol%, 65 mol%, 

80 mol% or 100 mol%. During the hydrothermal synthesis, La(NO3)3·6H2O and 

Eu(NO3)3·6H2O are added at the mol%-ratio desired in solution #1. 

Samples synthesized for TRLFS measurements 

La-monazite samples measured by TRLFS were synthesized following a slightly different 

route. La- and Eu-nitrate were synthesized by dissolving La- and Eu-oxide in 10 mol·L-1 

HNO3, and diluting the solution with supra-pure water. 

Cm-doped LaPO4 was synthesized by adding Cm solution (2·10-5 mol·L-1) to the La 

solution. The composition of the Cm (III) solution (20.0 µmol·L-1) is 97.3 % 248Cm, 

2.6 % 246Cm, 0.04 % 245Cm, 0.02 % 247Cm and 0.009 % 244Cm in 1.0 mol·L-1 HClO4. 

 

3.1.3. Pressing and sintering of REPO4 pellets 

In order to synthesize pellets, monazite powder was first calcinated at 350 °C, 500 °C or 

950 °C for two hours. Powder (400 - 500 mg) was then pressed into cylindrical pellets of 

10 mm diameter by cold uniaxial pressing at 64 - 765 MPa. The apparatus used here is an 

Oehlgass, Hahn & Kolb press. The LaPO4 green pellets were sintered three hours at 

1400 °C, and La(1-x)EuxPO4 (x = 0.2, 0.35, 0.5, 0.65, 0.80, and 1.0) green pellets were 

sintered for three hours at 1500 °C. 

 

3.1.4. Physical properties of pellets 

3.1.4.1. Density measurements 

The green density ρg of the pellets was determined by the geometrical method: 

 ρg 
��

����
 ( 4 ) 

Where m is the mass of the sample, D is the diameter of the sample, and h is the height of 

the sample. 
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The sintered density ρs was determined by hydrostatic weighing in water (Archimedes 

method): 

 
�

� 	 
��

	 � 
 
�� � �

 ( 5 ) 

Where m1 is the mass of the pellet, m2 is the mass of the pellet covered with paraffin, m3 

is the mass of the pellet immersed in water, ρs is the sintered density of the sample, ρp is 

the density of the paraffin (ρp = 0.9), and ρH2O is the density of water at room temperature 

(ρH2O = 0.9982). 

 

3.1.4.2. Vickers microhardness and fracture toughness 

The microhardness of sintered pellets was measured by a diamond Vickers indenter. The 

apparatus is an Anton Paar MHT 10. The microhardness (HV (GPa)) was determined by 

the following expression [91]: 

 
�

�
�
 ( 6 ) 

Where F (N) is the load, and dc (µm) is the average length of the diagonals of the Vickers 

indents. 

 

The fracture toughness KIc (MPa·m1/2) was determined with the indentation crack length 

method using the Anstis equation [91]: 

 
�� �

�

�

	

�

�

��.� ( 7 ) 

Where cl (µm) is the average length of cracks, and E (GPa) is the Young modulus. The 

Young modulus of LaPO4 was measured to be 133 GPa [92]. 
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Figure 20: SEM-photography showing an indent and cracks on a ceramic due to the Vickers 
microhardness measurements. The average length of the diagonals dc and the average length of the 
cracks cl can be determined 
 

3.1.5. Thermogravimetry coupled with differential scanning calorimetry 

The thermal behavior of the dried powder was investigated from room temperature up to 

1000 °C or 1300 °C by Thermogravimetry (TG) coupled with Differential Scanning 

Calorimetry (DSC) analysis in air atmosphere at a heating rate of 10 °C·min-1. The 

measurements were performed with an apparatus from the company Netzsch, model STA 

449C Jupiter. 

 

3.1.6. Powder X-ray diffraction analysis 

Powder X-ray diffraction is a long-range order method used to define the structure of a 

crystalline sample. The XRD patterns typically show the intensity of the Bragg 

reflections versus 2θ (diffraction angle). The structure analyses are carried out at room 

temperature. The analyses are performed with the D8 Advance, the D4 Endeavor from 

Bruker AXS GmbH, and the Stadi Transmissions Diffractometer from Stoe & Cie 

GmbH. The data were analyzed with the software “Match!” from Crystal Impact (version 

1.106). 

The program Topas was used for pattern indexing [93]. The lattice parameters (a, b, c) 

and the volume of the unit cell V are measured on La(1-x)EuxPO4 (x = 0.0, 0.2, 0.35, 0.5, 
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0.65, 0.8, 1.0). As the estimated standard deviations are underevaluated by Topas [93], 

these standard deviations have to be corrected by being multiplied by three [94]. 

The mean nanocrystallite size (L) and the lattice distortions (ε) were determined with 

XRD data (β, θ) by using the Hall-Williamson method [95]: 

 
 ( 8 ) 

Where θ is the Bragg angle, λ is the wavelength of incident X-rays, and β is the peak half-

width corrected to instrumental widening. 

The values of the Bragg angle and the half-width of each Bragg peak are determined for 

each reflex. The values of β·cos(θ) are plotted versus sin(θ). The experimental points 

were described by a linear dependence. The values of the interception point of the line 

with the ordinate and its slope serve to calculate L and ε respectively.  

 

3.1.7. Raman spectroscopy 

Raman spectroscopy is a short-range order method. It gives information about 

vibrational, rotational and other low frequency transitions between atoms [96]. The 

spectra are recorded with a Horiba Scientific LabRam HR Vis spectrometer. Here, 

Raman spectra were excited with a He-Ne laser (λ = 632.81 nm). The spectra are fit using 

Gaussian-Lorentzian profiles in order to determine the Raman peaks. 

 

3.1.8. Scanning electron microscope 

The morphology of the powders was investigated using a scanning electron microscope 

(SEM) (FEI model Quanta 200F). The SEM is coupled with an Energy-Dispersive X-ray 

Spectroscopy (EDS) equipment (EDAX model Genesis 4000), that permits to 

characterize the element distribution in a sample. The pellets were mirror polished and 

thermally etched at 1000 °C for investigations on the SEM. 

 



3. Experimental part 

45 

3.1.9. Specific surface area measurements 

The Brunauer, Emmett and Teller method (BET) is used for the measurement of the 

specific surface area of powder. Here, the calculation was realized with the adsorption of 

nitrogen molecules on the particles. The measurements were performed with a 

Quantachrome Autosorb apparatus. 

 

3.1.10. Dilatometer 

The shrinkage of the pellets occurring during the sintering was investigated by 

dilatometry (DIL 402C, Netzsch). The measurements were performed from room 

temperature up to 1400 °C with a heating rate of 5 °C·min-1. The final density after the 

sintering in the dilatometer was determined by hydrostatic weighing in water (see sub-

section 3.1.4.1). The relative density of the pellets during dilatometric experiments was 

calculated from: 

[97] 
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 ( 9 ) 

Where L0 is the initial thickness of the pellet, Lf is the final thickness of the pellet, D0 is 

the initial mean diameter, Df is the final mean diameter, ∆L(t) is the change in thickness 

of the sample, ρf is the final relative density, and α is the anisotropic shrinkage factor. 

 

3.1.11. Inductive coupled plasma mass spectrometry 

The Inductive Coupled Plasma Mass Spectrometry (ICP-MS) measurements were 

realized with the Elan 6100 DRC apparatus, developed by Perkin Elmer and SCIEX. The 

10 mL samples are composed of 10 µL of solution to be analyzed, 100 µL of suprapure 

HNO3, and the rest of suprapure H2O. 

The ICP-MS is a chemical analysis that counts the number of ions at a certain mass of the 

element. First of all the sample is introduced in the nebulizer and is converted into small 

droplets. They are carried through the spray chamber, the tube and then into the plasma, 

which ionizes the elements present in the droplets. These ions pass through the interface 

and are focused by the ions lens. The ions are separated by their mass-to-charge ratio in 
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the mass spectrometer and finally measured by the detector. The measured signal 

intensities are converted into concentrations of each element (by the computerized data 

system). A calibration curve is generated from the measurements of standards in order to 

compare them with the signals from unknown samples and to determine the concentration 

of each metal in the sample. 

 

3.1.12. Aqueous durability tests 

The resistance of monazite samples to corrosion was determined with static dissolution 

tests. Dissolution rates are determined on La(1-x)EuxPO4 samples (with x = 0.0, 0.2, 0.5, 

0.8 or 1.0), synthesized with a molar ratio of (La, Eu):P = 1:1. Grain size was from 

100 µm to 200 µm. The leached samples are prepared as shown on Figure 21. 

For each of the five compositions, seven Teflon PFA beakers are filled in with ~ 10 mg 

of ceramic together with 25 ml leachate. The solubility of LaPO4 and EuPO4 were 

calculated with the GEMS program [98]. They are 1.84·10-5 mol·L-1 and 

1.19·10­5 mol·L-1 respectively, so that the experiments start in under saturation. The tests 

are realized in acidic media, due to the high resistance of monazite ceramics to leaching. 

The leachate is a NaCl solution (0.1 mol·L­1) acidified with HCl up to pH = 2. The ionic 

strength is of 0.1. The Teflon PFA beakers are placed in a shaking oil bath at 90 °C (see 

Figure 22). 

The tests run over a period of one month (28 days). At given intervals, a small amount of 

leachate is pipetted and filtered with Anotop 25-Plus filter, which have a pore size of 

0.02 µm and a diameter of 25 mm. Neither La nor Eu are adsorbed by these Anatop 

filters. After the filtration, the leachates are analyzed by ICP-MS (see section 3.1.11) to 

determine the concentration (mg·L­1) of La and Eu, respectively. Considering the error 

due to ICP-MS and the pipetting, the minimum marge of error is of 10 %. 
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Figure 21: Flow chart representing the synthesis of La(1-x)EuxPO4 for aqueous durability tests. 
 

In order to compare the aqueous durability of La and Eu within the monazite matrix, the 

normalized weight loss NL(i) (g·m­2) is calculated with the measured concentrations 

(mg·L­1). It is assumed that during the time of the experiment, the mass and the surface of 

the sample stay the same [99]. In the case of static experiments, the normalized weight 

loss is determined as follows: 
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Where i is the measured element (La or Eu), mi is the total amount of i measured in 

solution (g), S is the effective surface area of the sample in contact with the solution, and 

fi is the mass ratio of the element i in the solid. 

 

The normalized dissolution rate RL (g·m-2·d-1) is the mass loss of the dissolved solid per 

time and surface units. It is the derivative of the normalized weight loss NL (g·m-2) with 

respect to time: 

[100] 
�

�

�

�
 ( 11 ) 

Where i is the measured element (La or Eu), mi is the total amount of i measured in 

solution (g), S is the effective surface area (m²) of the sample in contact with the solution, 

fi is the mass ratio of the element i in the solid, and t is the time. 

 

 
Figure 22: Shaking oil bath at 90 °C used for aqueous durability tests. Closed (left) and open (right). 
 

3.1.13. Radiation tolerance tests by ion implantation 

In accordance with the physical properties of La-monazite-type pellets (see section 3.1.4), 

LaPO4 powder was synthesized by hydrothermal synthesis, calcined at 500 °C, pressed, 

and sintered during three hours at 1400 °C. The ion bombardment on ten La-monazite-

type pellets simulating radiation damages was carried out with an Eaton NV 3204 ion 

implanter at the PGI­9 institute (Forschungszentrum Jülich GmbH). Three pellets were 

bombarded with Kr2+ ions at an energy of 400 keV. 
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La-monazite type ceramics have a very low critical amorphization temperature (see sub-

section 2.3.2.2). In order to be able to observe the damages, LaPO4 pellets have to stay at 

the temperature lower than Tc = 60 °C during and after the ion bombardment. The sample 

chamber of the ion implantation system at which the experiment was carried out has a 

cooling modulus working with liquid nitrogen. The temperature achieved was around 

-100 °C. After the experiments, samples were conserved in a freezer at a temperature 

lower than 0 °C. The damages were analyzed by Raman spectroscopy. During the Raman 

measurements, the sample was put on a copper plate cooled down by a cooling bath. The 

cooling bath was composed of 21.25 g magnesium dichloride hexahydrate and 25 g ice 

[101]. 

3.1.14. Time resolved laser fluorescence spectroscopy 

The experiments were performed in the Institute for Nuclear Waste Disposal (INE) of the 

Karlsruhe Institute of Technology (KIT). Pictures taken in the TRLFS laboratory show 

the optical set-up and the sample emitting light on Figure 23. 

Figure 24 schematically shows the experimental set-up used for TRLFS measurements. 

In practice, the experimental set-up is composed of an excimer laser, dye cuvettes, 

polarizers, the sample chamber, a camera and a computer system. The measurement 

occurs with a pulse of laser, the exposure time being shorter than the decay time of the 

material [61]. The laser has a given wavelength, which can be adjusted by a dye. The dye 

Qui is utilized to obtain UV light [61]. Rhodamine 6G is used for direct excitation of Eu, 

and Rhodamine B for direct excitation of Cm [61]. While the emitted light from the dye 

cuvettes passes through the polarizer, the power can be adjusted. Afterwards the light is 

focused on the sample. The sample is kept in a sample chamber under vacuum and cooled 

to achieve temperatures under 20 K for a high resolution of the spectra. The camera 

catches the light emitted by the sample starting from a certain time after the pulse of light 

was sent from the laser. The delay until the camera opens is called “step”. These 

measurements are repeated more than hundred times. The signals caught by the camera 

are transmitted to the computer. 
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with the neighbor atoms causing interference signals [102]. The effects observed in the 

edge region correspond to the XANES domain, from which information about valence 

and coordination geometry can be obtained. The EXAFS part of the spectrum is related to 

the interferences at higher energies (from 70 eV to 1000 eV above the edge) and is used 

to give information about interatomic distances as well as number and type of nearest 

neighbors. 

XAFS is applicable to almost all elements of the periodic table, except the lightest ones, 

in condensed matter (solids, liquids, interfaces, etc.). Unlike XRD, crystallinity of the 

sample is not required for XAFS measurements. The source is often a synchrotron 

particle accelerator, because it generates high-quality (flux and brilliance) X­ray 

radiation. Several synchrotron light sources are available in Europe, e.g. ANKA in 

Karlsruhe (Germany) [103] and ESRF in Grenoble (France) [104]. In this work, 

measurements were performed at the INE-Beamline for actinide research at ANKA [105] 

(Karlsruhe Institute of Technology, campus north), which is operated by the Institute of 

Nuclear Waste Disposal (INE). 

Eu (III) L3-edge EXAFS spectra were recorded for the La0.95Eu0.05PO4 powder in 

fluorescence yield detection mode. The energy calibration was carried out by setting the 

K­edge of a Fe foil at 7112 eV. Several scans were merged to improve the signal to noise 

ratio by using the Athena interface [106] to the Ifeffit software, and the Fourier transform 

was obtained from the k3·χ(k) function. The spectrum was fit in R-space by using phase 

and amplitude function calculated with feff 6 [107] with the Artemis interface [106] to 

the Ifeffit software. 
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4. Results and discussion 

The aim of this study is to define the ability of La-monazite as host matrix for the 

immobilization of minor actinides. The main properties required for this purpose are the 

incorporation of doping elements on regular atomic positions within the crystal structure, 

and the stability of the doped ceramic. 

Chapter 4.1, Characterization of monazite-type powder (p. 53), analyzes the thermal 

behavior, the structure, and the morphology of La-monazite powder synthesized by 

hydrothermal route. Then, the incorporation of the Eu or Cm as dopant in La-monazite is 

analyzed by spectroscopic methods. TRLFS and EXAFS serve the understanding of the 

sample structure at a molecular level. TRLFS is used to explore the local structural 

environment of Eu and Cm. EXAFS quantifies the distances between Eu and its 

neighbors, in terms of distance and coordination number. 

Chapter 4.2, Characterization of monazite-type pellets (p. 81), investigates the physical 

properties of monazite pellets. The optimal pressure corresponding to the highest density 

is obtained via the study of compressibility and sinterability. Dilatometric results permit 

to analyze the material behavior during sintering. 

Finally, chapter 4.3, Resistance to corrosion and to irradiation (p. 92), evaluates the 

stability of monazite samples by applying aqueous durability tests and radiation tolerance 

tests. Here, leaching tests are done in an acidic media at 90 °C on Eu-doped LaPO4. 

Radiation tolerance is tested on La-monazite pellets. The samples are subjected to ion 

bombardment and measured by Raman spectroscopy before and after the implantation. 

4.1. Characterization of monazite-type powder 

4.1.1. Thermal behavior of La-monazite-type powder by means of TG-DSC 

measurements 

The thermal behavior of LaPO4 powder is investigated from room temperature up to 

1300 °C by TG coupled with DSC. Figure 25 shows the weight loss (%) of a sample (left 

axis, blue curve) and the DSC signal (right axis, green curve). Figure 26 shows the 

comparison of TG (left axis, blue curve) and the derivative of TG with respect to 

temperature (right axis, light blue curve).  
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Figure 25: TG-DSC measurement on La-monazite powder. 
 

 

 

 
Figure 26: TG and dTG/dT curves of La-monazite powder. Inset: zoom-in of the graph from 600 °C 
to 1300 °C. 
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The total mass loss of approx. 4.5 % shown by the TG curve as well as the exothermic 

and endothermic peaks shown by the DSC curve result from the reactions occurring 

within the sample during thermal treatment. The behavior of the sample was compared 

with La-monazite-type samples found in the literature [35; 108-110]. Five distinct 

temperatures are shown on Figure 25 and Figure 26 defining zones of interest: 115 °C, 

215 °C, 500 °C, 800 °C, and 1120 °C. 

A broad endothermic peak is observed from room temperature up to 900 °C. It is likely to 

be related to the main release of water. 

The hygroscopic properties of phosphates lead to adsorption of water from air. Between 

room temperature and 115 °C, an endothermic peak is observed at 65 °C. It reveals the 

evaporation of adsorbed water, associated with a weight loss of approx. 1.5 %. 

At temperatures between 115 °C and 215 °C, the endothermic peak observed at 160 °C is 

related to the elimination of NH4 impurities, yielding a weight loss of approx. 0.9 %. It 

corresponds to the following endothermic transformation: 

[111] NH4NO3 � NH3 + HNO3 ( 12 ) 

 

At temperatures between 215 °C and 480 °C, a weight loss of approx. 0.9 % as well as an 

exothermic peak at 315 °C (*) are observed. These phenomena are related to the 

following exothermic reaction occurring in the sample: 

[111] NH4NO3 � N2 + 2 H2O + ½ O2 ( 13 ) 

 

After the hydrothermal synthesis the sample is mainly composed of La-monazite and its 

hydrated form La-rhabdophane (LaPO4·0.5H2O), which is likely to be included as 

secondary phase. At temperatures between 500 °C and 800 °C, a low and broad 

exothermic peak is associated with the irreversible phase transformation from hexagonal 

to monoclinic structure (from rhabdophane to monazite) [109]. 

At temperatures between 800 °C and 1120 °C, the cause of the exothermic peak at 

971 °C (**) is more questionable. In the work of Lucas and co-workers [109; 110], an 

endothermic peak at about the same temperature was observed during the study of 

thermal behavior of LaPO4·H2O. The peak is observed either at 1000 °C or at 950 °C in 
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[109] and [110], respectively. In both articles, the exothermic peak is attributed to the 

formation of La(PO3)3 as secondary phase. 

Here, the La:P ratio (53:47) corresponds to 28 wt.% of P2O5 on the La2O3­P2O5 phase 

diagram (Figure 17). If a secondary phase should occur, it would be a La-richer phase 

than LaPO4. La3PO7 could be a secondary phase. Park described the phase transformation 

at 935 °C of α-La3PO7 (low-temperature phase) into β-La3PO7 (high-temperature phase) 

[112]. Therefore, the exothermic peak at 971 °C (**) is assumed to be due to this α-β 

phase transformation. Nevertheless this phase transformation is not reported in any other 

publications. There is a lack of recent studies about the La2O3­P2O5 phase diagram in 

general and about La3PO7 in particular. Further investigations are necessary in order to 

confirm the hypothesis of presence of La3PO7 in the material. Another hypothesis for the 

exothermic peak (**) could be the start of the crystallization of LaPO4 from 950 °C on. 

The value of the fifth remarkable temperature was estimated at approx. 1120 °C by the 

first derivative of the TG curve (see inset on Figure 26). At temperatures above 1120 °C, 

the last OH-groups are eliminated thus leading to the end of the weight loss. The DSC 

curve shows instability, which is likely to be related to the acceleration of crystallization 

up to 1300 °C. 

 

4.1.2. Structure analysis of monazite-type powder by means of X-ray diffraction 

The aim of the monazite-type powder analysis by means of XRD is to verify that the 

synthesized samples have the monoclinic structure of La-monazite and to analyze the 

purity of the phase. As assumed in the previous section, traces of La3PO7 may be present. 

Five La-monazite powders were also analyzed after a thermal treatment at five different 

temperatures (T1 to T5 respectively, see Table 8) from drying temperature (95 °C) up to 

sintering temperature (1400 °C). The sizes of the nanocrystallite as well as the 

microstrain are investigated. 

Moreover, lattice parameters of Eu-doped LaPO4 (La1­xEuxPO4, with x = 0 to 1) were 

calculated and the values obtained are compared to the Gd-doped LaPO4 (La1­xGdxPO4 

with x = 0 to 1) values found in the literature [42]. The correlation between the lattice 

parameters and the percentage of dopant within the crystal structure is discussed. 
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4.1.2.1. Structure analysis of La-monazite-type powder sintered at 1300 °C 

The diffraction data of La-monazite powder sintered at 1300 °C, together with the LaPO4 

and La3PO7 reference data are shown on Figure 27 (a) and (b) (intensity versus 2θ). The 

sample (black curve) matches with the indexed Bragg reflections of the reference (blue 

peaks, data PDF 2, reference n° 00­032­0493). Hence it confirms that the sample mainly 

contains LaPO4. However, on Figure 27 (b), Bragg peaks can be referred as La3PO7 

phase (red peaks, data PDF 2, reference n° 00­049­1023), in particular at 2θ = 12.9°, at 

2θ = 22.4° and at 2θ = 43.7°. Thus, this oxyphosphate phase is present as impurity within 

the La-monazite sample. As assumed before, the exothermic peak (**) seen at 971 °C on 

Figure 25 is due to the La3PO7 phase transformation. 
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Figure 27: XRD pattern (from 0° to 90°) of LaPO4 sintered at 1300 °C (black) together with 
reference data of LaPO4 (blue) and La3PO7 (red) (a), and its zoom in (from 0° to 44°) (b). 
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4.1.2.2. Effects of a thermal treatment on La-monazite samples 

In order to study the evolution of the structure with the temperature, La-monazite samples 

were subjected to a thermal treatment at five different temperatures, given in Table 9: 

Table 9: Calcination temperatures of LaPO4 powder being measured by XRD. 
T1 T2 T3 T4 T5 

95 °C 350 °C 500 °C 950 °C 1400 °C 

 

The powders are analyzed by XRD and the sizes of the nanocrystallite (L) as well as the 

microstrain of crystal lattice (ε) are investigated. The calcination temperatures were 

chosen based on the thermal behavior of the La-monazite sample (see section 4.1.1): 

• T1 corresponds to the drying temperature within the synthesis method of LaPO4. 

• At T = T2: adsorbed water and impurities are eliminated. 

• At T = T3: the hexagonal to monoclinic transformation has not taken place yet. 

• At T = T4: the hexagonal to monoclinic transformation has taken place already. 

• T5 is the sintering temperature of La-monazite pellets (see section 3.1.3). 

 

X-ray diffraction pattern 

Figure 28 (a), (b) and (c) show the XRD patterns of LaPO4 powder calcined at T1 to T5 

respectively. No significant differences are observed between the patterns of the T1, T2 

and T3 samples (Figure 28 (a)). Figure 28 (b) shows the results after calcination at T3 and 

T4. The peaks are sharper after calcination at 950 °C than calcination at 500 °C, i.e. the 

peak half-width has decreased. It is likely to be related to the beginning of the 

crystallization of the sample. Figure 28 (c) shows the results after calcination at T4 and 

T5. The peaks are even sharper at 1400 °C than at 950 °C, since the crystallinity increases 

with temperature. 
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Figure 28: XRD patterns of La-monazite powder after a thermal treatment at T1, T2, T3 (a),  
T3, T4 (b), and T4, T5 (c). 
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Evolution of the crystal structure with the calcination temperature of La-monazite 

The mean nanocrystallite size L and the distortions of the lattice ε were calculated by the 

Hall-Williamson method. Figure 29 shows the representation of β·cos(θ)/λ versus 

sin(θ)/λ, calculated with the XRD data (i.e. the Bragg angle θ and the corrected peak half-

width β) of La-monazite calcined at T1 to T5 respectively. Afterwards, a simple linear 

regression permits to deduce the mean nanocrystallite size as well as the lattice distortion 

(see equation ( 8 )). The results are shown on Table 10 and Figure 30. 

 

 
Figure 29: Representation of the Hall-Williamson method applied on La-monazite  
calcined at T1 to T5, respectively. 
 
After the drying at 95 °C as well as the calcination at 350 °C or 500 °C of the powder, the 

nanocrystallite size is about 18.5 nm (Table 10), which is likely to be the size of primary 

particles. The mean nanocrystallite size L largely increases with the temperature, from 

18.5 nm up to 57.0 nm after calcination at 950 °C, which leads to the assumption that the 

crystallization process begins at T > 500 °C. Then, the sintering of the material at 

1400 °C results in an increase of the nanocrystallite size up to 73 nm. 

The lattice distortions have a large standard deviation, so that the evolution tendency is 

not as precise. However, a decrease trend of the lattice distortion is noticed on Figure 30, 

from 0.03 % at 95 °C to 0.01 % at 1400 °C. The higher value at 95 °C is due to the 

presence of OH-groups in the matrix before thermal treatment (water of crystallization of 
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La-rhabdophane). At high temperature, the crystallization of the ceramic reduces the 

lattice distortion to approximately zero. 

The mean size of the nanocrystallite L obtained with the Hall-Williamson method is 

compared to the particle size D obtained on the same sample from BET measurements 

(see Figure 31 and Table 10). Assuming that the particles are spherical, the mean particle 

size D is calculated as follows: 

 
 ( 14 ) 

Where ρ is the density of LaPO4 (5.11 g·cm-3 [database PDF 2, n° 00-084-0600]), and S 

is the specific surface area [m2·g­1]. 

 

Table 10: Distortion (ε) and mean nanocrystallite size (L) determined by the Hall-Williamson method 
and the mean particle size (D) determined by BET measurements of La-monazite powder calcined at 
T1 to T5, respectively. 

Temperature ε (%) L (nm) D (nm) 

T1 = 95 °C 0.03 18.3 14.9 

T2 = 350 °C 0.01 18.6 16.3 

T3 = 500 °C 0.01 18.5 18.6 

T4 = 950 °C 0.00 57.0 241.6 

T5 = 1400 °C 0.01 72.7 346.4 

 

 
Figure 30: Mean nanocrystallite size L (black) and lattice distortion ε (grey) of La-monazite powder 
versus thermal treatment temperature (T1 to T5).  
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From room temperature up to 500 °C, the particle size coincides with the nanocrystallite 

size. At temperatures above 500 °C, the process of material crystallisation begins and 

leads to an increase of both the nanocrystallite and the particle sizes. At 950 °C, 

D (241.6 nm) is more than four times higher than L (57.0 nm). At 1400 °C, D (346.3 nm) 

is even almost five times higher than L (72.7 nm). After a sintering at 1400 °C it is 

assumed that the particles have a size of approx. 400 nm and consists of nanocrystallites 

of approx. 70 nm. 

 

 
Figure 31: Evolution with the temperature of the size of the nanocrystallites measured by the Hall-
Williamson method (L, black) and of the particles measured by BET method (D, red). 
 

Morphology of La-monazite powder 

The morphology of La-monazite particles dried at 95 °C was investigated by SEM. The 

size of the particles shown on Figure 32 variates from 1 to 20 µm. Figure 33 shows a 

photography at higher magnification, where round-shaped particles are observed. They 

are likely to be primary particles of 20 to 30 nm. This size is of the same order of 

magnitude as the values calculated by using both the Hall-Williamson and the BET 

methods after drying at 95 °C (see Table 10). It can be observed on Figure 33 that the 

particles tend to form aggregates of approx. 100 nm. 
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Figure 32: SEM-photography of La-monazite particles synthesized by hydrothermal route after 
drying at 95 °C. 
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Figure 33: SEM-photography of La-monazite particles synthesized by hydrothermal route  
(drying at 95 °C), at a magnification of 150 000. 
 

4.1.2.3. Effect of a dopant incorporated in the La-monazite crystal structure 

Table 11 shows the lattice parameters (a, b, c) and the volume of the unit cell (V) of 

seven compositions of Eu-doped LaPO4 samples measured with the Topas software [93]. 

There has been no data about the lattice parameters of Eu-doped LaPO4 in the literature 

so far. In the context of the study, the data will be compared to Gd-doped LaPO4.  

The parameter difference of LaPO4 and EuPO4 is about 2.53 %, 2.93 %, 2.42 % and 

7.94 % for a, b, c, and V, respectively. The decrease of the lattice parameters a, b, c, and 

V is likely to be related to the progressive replacement of La by Eu in the crystal 
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structure. It suggests the existence of a regular solid solution (La, Eu)PO4 between the 

end members LaPO4 and EuPO4.  

 

Table 11: Lattice parameters (a, b, c, ß) and volume V of the unit cell of La(1-x)EuxPO4. The error is 
given in parenthesis. 

x a (Å) b (Å) c (Å) β (°) V (Å³) 

0.00 6.8408(2) 7.0753(2) 6.5120(2) 103.285(2) 306.75(1) 

0.20 6.8072(2) 7.0364(2) 6.4838(1) 103.437(1) 302.06(1) 

0.35 6.7907(3) 7.0163(3) 6.4690(3) 103.488(3) 299.72(2) 

0.50 6.7560(3) 6.9761(3) 6.4379(3) 103.630(3) 294.87(2) 

0.65 6.7348(3) 6.9477(3) 6.4186(3) 103.703(3) 291.79(2) 

0.80 6.7034(4) 6.9119(4) 6.3885(4) 103.823(4) 287.43(3) 

1.00 6.6677(4) 6.8679(4) 6.3544(4) 103.953(4) 282.40(3) 

 

Comparison with the literature 

The lattice parameters of LaPO4 and EuPO4 obtained here are compared with the works 

of Ni [113] and Terra [42] (see Table 12). For LaPO4, the difference between this work 

and the work of Ni is about 0.14 %, 0.07 %, 0.13 %, and 0.01 % for a, b, c, and β. And 

for EuPO4, the difference is about 0.10 %, 0.09 %, 0.08 %, and 0.007 % for a, b, c, and β. 

The values calculated in this work are in good agreement with the values found in the 

literature. The difference between the GdPO4 lattice parameters published by Ni and 

Terra respectively (see Table 12) are not within the marge of error. The parameters show 

a difference of 0.14 %, 0.08 %, 0.05 %, and 0.02 % for a, b, c, and β. These relative 

errors are about the same order of magnitude than the difference between this work and 

the work of Ni.  

The lattice parameters (a, b, c) and the volume of the unit cell V of Eu-doped LaPO4 are 

compared with the values of Gd-doped LaPO4 [42] on Figure 34 to Figure 37. Due to the 

lanthanide contraction (see section 2.4.1), Gd (Z = 64) has a smaller radius than Eu 

(Z = 63). The three cell parameters (a, b, c) of GdPO4 are smaller than the ones of EuPO4, 

thus, the unit cell of GdPO4 is also smaller. 
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The results for the end members (LaPO4 and EuPO4) presented here are in good 

agreement with the literature, and the good incorporation of the dopant (here Eu) in the 

crystal structure can be assumed. The incorporation of Eu in the LaPO4 lattice was 

investigated with TRLFS and will be discussed in the next section as well. 

 

Table 12: Lattice parameters (a, b, c, β) of synthetic monoclinic LaPO4, EuPO4 and GdPO4. The 
error is given in parenthesis. 

Phases a (Å) b (Å) c (Å) β (°) References 

LaPO4 

LaPO4 

LaPO4 

6.8313(10) 

6.837(1) 

6.8408(2) 

7.0705(9) 

7.078(2) 

7.0753(2) 

6.5034(9) 

6.507(2) 

6.5120(2) 

103.27(1) 

103.28(2) 

103.285(2) 

[113] 

[42] 

This work 

EuPO4 

EuPO4 

6.6613(10) 

6.6677(4) 

6.8618(9) 

6.8679(4) 

6.3491(8) 

6.3544(4) 

103.96(1) 

103.953(4) 

[113] 

This work 

GdPO4 

GdPO4 

6.6435(9) 

6.653(2) 

6.8414(10) 

6.847(2) 

6.3281(6) 

6.331(2) 

103.976(9) 

103.96(2) 

[113] 

[42] 

 

 

 
Figure 34: Lattice parameter a of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) 
compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42]. 
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Figure 35: Lattice parameter b of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) 
compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42]. 

 

 

 
Figure 36: Lattice parameter c of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) 
compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42]. 
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Figure 37: Volume of the unit cell of La(1-x)EuxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) 
compared with La(1-x)GdxPO4 (x = 0.00, 0.20, 0.35, 0.50, 0.65, 0.80 and 1.00) [42]. 
 

4.1.3. Time resolved laser fluorescence spectroscopy 

La-monazite is studied as potential host matrix for MA disposed in a long-term nuclear 

waste repository. The formation of a solid solution can be investigated at a molecular 

level with short-range order methods. 

Here, Eu- and Cm-doped La-monazite were measured by TRLFS in order to analyze the 

incorporation mechanisms of a dopant in the crystal structure of La-monazite. Several 

authors have written about the luminescent properties of synthetic monazite when it is 

doped with Eu [82; 114]. However, there has been no data about Cm-doped LaPO4 so far. 

The results discussed in this section are published by Holliday, Babelot et al. [115]. 

4.1.3.1. TRLFS measurements on Eu-doped LaPO4 powder 

Eu-doped LaPO4 powder was analyzed by direct excitation. The 7F0 � 5D0 transition was 

investigated directly while varying the excitation wavelength from 575 to 582 nm. As 

mentioned in the background (see sub-section 2.5.1.2), this transition is non-degenerate. 

As a consequence each Eu (III) environment presents a single peak in the excitation 

spectrum. The total number of Eu (III) species in a sample can be identified by these 

means. 
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Figure 38 shows the integrated fluorescence intensity versus the excitation wavelength 

(from 575 to 582 nm). At least two species can be identified: a major species excited at 

578.4 nm and a minor species at 577.5 nm (shown with arrows on Figure 38). After the 

thermal treatment of the sample, the major species is still seen at 578.4 nm, whereas the 

minor species changes from 577.5 to 578.9 nm. 

 

575 576 577 578 579 580 581 582
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Figure 38: Excitation spectrum of Eu-doped LaPO4 before thermal treatment.  
The 5D0 ���� 7F0 transitions of both the major and minor species are indicated with arrows. 
 

The lanthanide within the monazite-type structure is surrounded by nine oxygen elements 

positioned at nine different distances, respectively (see section 2.6.1),. As a result, the La 

site within La-monazite has a low symmetry (site symmetry C1, i.e. identity). 

Figure 39 shows a flow chart indicating the Eu luminescent transition and the 

corresponding peak number as well as the crystallographic point groups in Schoenflies 

notation. A Eu (III) ion showing a point group C1 will show a three-fold splitting for the 
7F0 � 5D1 transition and a five-fold splitting for the 7F0 � 5D2 transition. 
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Figure 39: Flow chart for point group determination in single crystals,  
based on selected transitions in the Eu (III) ion [116]. 
 

As mentioned before (see sub-section 2.5.1.2), measurements carried out by direct 

excitation excite the species individually. Figure 40 shows the emission spectra of the 

major Eu species of Eu-doped LaPO4 from direct excitation (before and after thermal 

treatment). The data published by Meyssamy et al. are indicated as vertical lines on 

Figure 40 (between 605 and 625 nm) and matches with the peaks of the sample after 

thermal treatment very well. The 5D0 � 7F0 transition is measured at λ = 578.4 nm. As 

expected of an element that shows C1 symmetry, (Figure 39), the 5D0 � 7F1 shows a 

3­fold degenerate splitting, and the 5D0 � 7F1 transition a 5­fold splitting. Eu occupies 

the La site within the LaPO4 crystal structure. 

The spectra before and after thermal treatment show the same shape and no significant 

change. Eu is situated on the La site in both cases, even synthesized at a temperature as 

low as 200 °C. 
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Figure 40: Emission spectra of the major Eu species of Eu-doped LaPO4 from direct excitation 
(before and after thermal treatment). The contributions of the three main transitions are indicated. 
 

A minor Eu species is also identified before and after the treatment at 1000 °C. Its 

excitation wavelength shifted from 577.5 nm to 578.9 nm, before and after thermal 

treatment, respectively. It shows a change of the Eu local environment. However, both 

emission spectra shows a 3-fold splitting of the 5D0 � 7F1 transition from 585–605 nm 

and a 5-fold splitting of the 5D0 � 7F2 transition from 605–635 nm in Figure 41. This 

indicates a low site symmetry of Eu (C1), similar to the major Eu species. Nevertheless, 

the spectra are only clearly resolved after thermal treatment. 

The presence of a minor Eu species could be caused by hydroxide interstitials in the 

La-monazite crystal structure, despite the acid treatment involved for the dissolution of 

La(OH)3 during the synthesis process (see section 3.1.2). This hypothesis can be verified 

by the measurements of fluorescence lifetime of the minor Eu species. This approach 

allows determining the number of waters in the first coordination sphere of Eu. 
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Figure 41: Emission spectra of the minor Eu species in Eu-doped LaPO4 from direct excitation 
(before and after thermal treatment). 
 

All Eu species are excited simultaneously by the normal UV excitation at 394.0 nm 

(7F0 � 5L6 transition). The fluorescence lifetimes for Eu were measured and the decay of 

the fluorescence was fitted for a bi-exponential decay with equation ( 15 ): 

 It = A1 exp(-k1t) + A2 exp(-k2t) ( 15 ) 

Where It is the integrated fluorescence intensity at time t, A1 is the quantity of species 1, 

A2 is the quantity of species 2, k1 (ms-1) is the decay constant (or reciprocal observed 

lifetime) of species 1, and k2 (ms-1) is the decay constant (or reciprocal observed lifetime) 

of species 2. 

 

If both Eu species are excited simultaneously, and if equal fluorescence intensity is 

assumed from both species, a relative abundance for each species can be calculated. The 

value corresponds to the ratio between the quantities A1 and A2. Direct excitation allows 

measuring the lifetime of each species separately. The decay constant is used in  

equation ( 1 ) to calculate the number of waters in the first coordination sphere of Eu. The 

data obtained from fluorescence decay measurements on Eu-doped LaPO4, and the 

corresponding number of waters is summarized in Table 13. The major Eu species shows 

a long fluorescence lifetime before (5.2 ms) as well as after the treatment at 1000 °C 

(3.6 ms). The Horrocks equation indicates that no water is found in the first coordination 

sphere. The minor Eu species shows a shorter fluorescence lifetime than the major Eu 
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species. It is 0.95 ms before and 1.4 ms after the heat treatment. These lifetimes indicate 

that 0.5 and 0.1 waters are present in the first coordination sphere of Eu. The presence of 

a hydroxide interstitial is assumed. The number of waters decreased after the thermal 

treatment. It is supposed that water is lost during annealing. However, instead of 

OH­groups, O­atoms remain in the crystal structure. 

 

Table 13: Relative abundance, fluorescence lifetime, and number of waters in the first coordination 
sphere, for both Eu species, before and after thermal treatment. 

Eu-doped LaPO4 Species 
Relative 

Abundance (%) 

Lifetime 

(ms) 
n (H2O) 

Before 

thermal treatment 

After 

thermal treatment 

Major Eu site 70 5.2 0.0 

Minor Eu site 30 0.95 0.5 

Major Eu site 

Minor Eu site 

70 3.6 0.0 

30 1.4 0.1 

 

4.1.3.2. TRLFS measurements on Cm-doped LaPO4 powder 

In order to study the incorporation of a minor actinide within the crystal structure of La-

monazite, LaPO4 was doped with 248Cm and measured by direct excitation, similarly as 

Eu-doped LaPO4. The results for both samples will be compared. In the following, the 
8S7/2 ­ 

6D7/2 transition will be discussed. 

The excitation spectrum of Cm-doped LaPO4 before thermal treatment is shown on 

Figure 42. The ground state splitting that can be observed on the spectrum is not clearly 

resolved. Nevertheless, the major Cm species is found at 602.5 nm, and a shoulder 

indicates a minor Cm species at 601.7 nm. 

The results are similar to the ones obtained for Eu-doped LaPO4: the major species is at 

slightly lower energy than the minor species. As mentioned above (see sub-section 

2.5.1.2), a free Cm ion shows an emission maximum at λ = 593.8 nm. Here, the strong 

complexation of Cm within the LaPO4 crystal structure induces a red shift (higher 

wavelength) for the major Cm species (λ = 602.5 nm). 
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Figure 42: Excitation spectrum of Cm-doped LaPO4 before thermal treatment. 
 

As already measured for Eu-doped LaPO4, the lifetimes were measured for Cm-doped 

LaPO4. Cm was also excited by UV light (λ = 396.6 nm) in order to excite all species 

simultaneously. The Kimura’s equation (see ( 2 ))) permits to relate linearly the decay 

constant to the number of waters in the first coordination sphere. 

The data obtained from fluorescence lifetime measurements on Cm-doped LaPO4, and 

the corresponding number of waters are summarized in Table 14. As in the case of Eu-

doped LaPO4, the major species in Cm-doped LaPO4 shows a long fluorescence lifetime 

(1.7 ms), which corresponds to an absence of water in the first coordination sphere of 

Cm. Based on a comparison with the case of Eu-doped LaPO4, the major Cm species is 

supposed to be on a La site of LaPO4. The minor Cm species has a 0.52 ms lifetime, and 

shows the presence of 0.4 waters in the first coordination sphere of Cm. This value is 

similar to the one of minor Eu species. 

 

Table 14: Relative abundance, fluorescence lifetime, and number of waters in the first coordination 
sphere, for both Cm species, before and after thermal treatment. 

Cm-doped LaPO4 Species 
Relative 

Abundance (%) 

Lifetime 

(ms) 
n (H2O) 

Before 

thermal treatment 

After 

thermal treatment 

Major Cm site 70 1.7 0.0 

Minor Cm site 30 0.52 0.4 

Major Cm site 100 1.2 0.0 
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After the thermal treatment, the minor Cm species has disappeared, showing a single 

species in the sample. This difference with the Eu-doped LaPO4 is probably due to the 

concentration difference between Eu and Cm in LaPO4 (5 mol% and 7 ppm respectively). 

The major Cm species stays at 602.5 nm. Figure 43 shows the comparison of three 

spectra: the excitation spectrum, the UV emission spectrum and the direct excitation 

emission spectrum, of Cm-doped LaPO4 after thermal treatment. The spectra show 

several peaks, due to consistent energy splitting of the ground state (8S7/2) after thermal 

treatment. It can be noticed that the direct excitation emission spectrum corresponds both 

to the profile of the excitation spectrum and to the UV emission spectrum. It shows that 

the peaks belong to a single Cm site.  
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Figure 43: A comparison of the excitation spectrum, emission spectrum from UV excitation, and low 
resolution emission spectrum from direct excitation at 602.5 nm of Cm-doped LaPO4 after thermal 
treatment. 
 

The fluorescence decay lifetimes of Cm are measured, with UV excitation and direct 

excitation at four wavelengths, between 602.0 and 603.0 nm. All the decays are mono-

exponential, which proves clearly the presence of a single Cm site. At each wavelength, 

the lifetime is 1.2 ms. This corresponds to an absence of water in the first coordination 

sphere of Cm. 

The ground state splitting of a Cm (III) ion within La-monazite can be resolved with a 

high resolution emission spectrum taken under direct excitation. Figure 44 shows four 
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different species excited by systematically stepping through excitation wavelengths 

(601.5 to 603.5 nm). Each species shows a four-fold splitting. Cm within the Cm-doped 

LaPO4 structure has a single Cm site, but shows four species. The slight difference 

between the four species can only be seen by a precise method such as Cm TRLFS. 

 

 
Figure 44: High resolution emission spectra from direct excitation of Cm-doped LaPO4 after thermal 
treatment. The arrows show the wavelengths mentioned in the legend. 
 

As this is the first time that such a sample is measured by TRLFS, no explanation for this 

phenomenon can be found in the literature. Nevertheless, a similar behavior of Cm within 

xenotime crystal structure was observed by Murdoch [117]. The four species found in 

their work are called “satellites”. Murdoch explained this phenomenon by the presence of 

impurities or defects in the crystal structure of Cm-doped LuPO4 [117]. The individual 

spectra could not be resolved in this case, because the excitation energies are overlapped. 

Here, the Cm environment of each four satellites is almost identical: similar degree of 

splitting, ratio of peak heights, proximity to each other, and an unique lifetime. The 

hypothesis proposed is that a difference in the four La sites within a LaPO4 unit cell 

exists. Indeed, as shown in the background (see Figure 16), the unit cell of LaPO4 is 

composed of four La atoms. The Cm species has a single site, as La in LaPO4, but the Cm 

site has four environments. This is supposed to be due to a deviation from the ideal 

structure of La­monazite. 
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4.1.4. Extended X-ray absorption fine structure 

The incorporation of Eu in La-monazite was studied by TRLFS. Two Eu species were 

found in the crystal structure of La0.95Eu0.05PO4. The study suggested that Eu species 

incorporate on the La site [115]. X-ray absorption fine structure (XAFS) measurements 

are also performed on the same La0.95Eu0.05PO4 sample, as complement of the information 

gained with TRLFS. The Eu L3-edge measurements enable to probe the local chemical 

environment. 

4.1.4.1. Fit of the Fourier transformation of L3-edge k3-weighted EXAFS spectra 

Figure 45 shows the experimental data and the fit of the Fourier transformation (FT) of 

L3-edge k3-weighted EXAFS spectrum of La0.95Eu0.05PO4. The fits results are given in 

Table 15. The FT of the k3·χ(k) spectrum shows two peaks between 1.4 and 3.0 Å, two 

further peaks can be seen between 3.0 and 4.1 Å, and one small peak between 4.1. and 

4.5 Å. 

 

  
Figure 45: Experimental data and fit of the FT data of Eu (5 mol%)-doped LaPO4. The fit results are 
presented in Table 15. 
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Table 15: Parameters of the fit between 1.4 Å and 4.6 Å of the La0.95Eu0.95PO4 EXAFS data. The 
R-factor a is 0.00085. 

Shell N b r (Å) c σ
2 (10-3 Å2) d ∆E0 (eV) e 

O1 4* 2.37 7 3.3 

O2 4* 2.53 7 

O3 1.5* 2.83* 7.5 

P1 1.0* 3.17* 6.8 

O4 1.1* 3.65 6.5 

P2 2.5 ± 0.4 3.76* 6.9 

La 2.1 ±0.5 4.06* 9 

O5 2.7 ± 1.0 4.61 8 

*Held fix during the fitting procedure. a The R-factor represents the goodness of the fit. b N represents the 

coordination number. c The value r represents the distance between Eu and the backscatterer atoms. d The 

σ² factor is the full width at half maximum of the peak, and corresponds to the mean square displacement 

but is often called Debye-Waller factor. It gives information on the structural and thermal order/disorder. If 

the sample has a high crystallinity around the probed atom, the Debye-Waller factor is low. e ∆E0 is the 

difference in ionisation energy E0 of Eu between the energy used to run the calculation (theory) and the 

energy obtained from the fit. This difference should not exceed ± 10 eV.  

 

4.1.4.2. Interpretation of the results 

The two peaks between 1.4 and 3.0 Å are modeled as three oxygen shells (NO1 = 4 at 

r(Eu-O1) = 2.37 Å, NO2 = 4 at r(Eu-O2) = 2.53 Å, and NO3 = 1.5 at r(Eu-O3) = 2.83 Å). 

Thus, the fit results of La0.95Eu0.05PO4 suggest the presence of 9.5 oxygen atoms 

surrounding Eu(III). 

Table 16 shows the distances between La and O, within an ideal LaPO4 crystal structure. 

As already mentioned (section 2.6.1), La is 9-fold coordinate (monoclinic crystal 

structure) in LaPO4 and the nine oxygen atoms in the first coordinate sphere of La are 

located at nine different distances (between 2.40 and 2.81 Å). The distances between Eu 

and the oxygen atoms found here are in good agreement with the La-O distances 

described in the literature. 
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Table 16: La-O distances in an ideal LaPO4 crystal structure [72]. 
 La-On distance (Å) 

On 

Å 

O1 O2 O3 O4 O5 O6 O7 O8 O9 

2.40 2.48 2.49 2.55 2.58 2.60 2.62 2.68 2.81 

 

The 9.5 oxygen atoms in the first coordination sphere are within the measurement 

uncertainties similar to 9.0. Europium is 9-fold coordinated by oxygen atoms, thus 

showing that Eu is incorporated in the La-monazite matrix at a La site. This result is 

consistent with the conclusion gained from the TRLFS measurements, i.e. that the Eu 

species incorporate on the La site. 

At higher distances (from 3 Å up to 4.5 Å), two phosphor shells are detected at a distance 

of 3.17 (NP1 = 1.0) and 3.76 Å (NP2 = 2.5 ± 0.4), with an oxygen shell in-between at 

3.65 Å (NO4 = 1.1). A lanthanum shell (NLa = 2.1 ± 0.5) is located at 4.06 Å and another 

oxygen shell (NO5 = 2.7 ± 1.0) is observed at 4.61 Å. These values are comparable with 

the values found in the literature for an ideal LaPO4 crystal structure (see Table 17). 

Indeed, up to four phosphor atoms surround La between 3.17 and 3.77 Å, and, two 

lanthanum atoms are observed around 4.1 Å in the ideal LaPO4 crystal structure. It 

confirms the incorporation of Eu at a La position. 

 

Table 17: La-Xn distances in an ideal LaPO4 crystal structure [72]. 
 La-Xn distance (Å) 

Xn 

Å 

P1 P2 P3 P4 La1 La2 

3.19 3.29 3.59 3.77 4.11 4.11 

 
The EXAFS data are in good agreement with the information found in the literature and 

with the TRLFS measurements. Eu (III) TRLFS and EXAFS measurements of Eu-doped 

La-monazite show that Eu is incorporated in the La-monazite crystal structure. 
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4.2. Characterization of monazite-type pellets 

4.2.1. Sintering process 

The synthesis process of ceramic materials is divided into three steps: the synthesis of the 

powder, the forming of the powder, and the sintering. The first two steps can be of 

several types: e.g. the wet or solid-state route for the synthesis, and the slip casting or the 

pressing for the forming. The sintering process of ceramics is mainly influenced by 

temperature and dwell time. In this chapter dedicated to pellet characterization, the 

sintering process is the key in understanding the microstructure evolution, the density 

measurements, and the dilatometric behavior. 

The sintering is the organization and the consolidation of powder particles to form a 

polycrystalline material. This process is composed of simultaneous phenomena: the 

consolidation, the densification and the granular growth (grains and particles). The 

consolidation happens with the development of necks between particles, by means of 

transport of matter by diffusion. The densification happens with the decrease of the 

porosity, resulting in the global shrinkage of the ceramic [77]. Through the sintering, 

powder becomes a mechanically cohesive material with a given microstructure. 

Most of the sintering mechanisms are thermally activated. The atomic diffusion leading 

to the consolidation happens at temperatures 60 – 80 % of the melting temperature Tm (K) 

[77]. As the melting point of La-monazite is of 2072 °C ± 20 °C [76], its sintering 

temperature ideally is between 1134 °C and 1603 °C. Here, the sintering temperature was 

chosen to be 1400 °C, following the work of Bregiroux [118]. 

 

4.2.2. Microstructure study of La-monazite pellet by means of SEM 

In this work, La-monazite green pellets were sintered during three hours at 1400 °C. The 

microstructure is presented on Figure 46 and shows polygonal grain boundaries that are 

typical for sintered grains. The grain size is from 0.5 µm to 5 µm, and the average grain 

size was estimated by the linear intercept method to be 1.7 ± 0.2 µm [119]. The convex 

grains marked with red arrows are typical grains that would gradually disappear under 

further heat treatment, because of diffusion mechanism and grain growth. 
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Figure 46: SEM-photography at a magnification of 10 000, of La-monazite pellets sintered at 
1400 °C. 
 

4.2.3. Optimization of the density of the pellets depending on the calcination temperature 

In order to obtain a mechanically stable matrix, La-monazite pellet properties have to be 

improved. For example, the mechanical strength of ceramic matrices can be improved 

with the increase of the sintering density [120]. In this work, the compaction efficiency or 

compressibility, and the sinterability are studied. Figure 47 shows a typical 

compressibility behavior of ceramic materials [121]. The green density ρg is plotted 

versus the logarithm of pressure P and is characterized by three linear regions and two 

break points at pressures P1 and P2. The intersection point of regions 1 and 2 forms the 

first break point at pressure P1 and the intersection point of regions 2 and 3 forms the 

second break point at pressure P2. 
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.  

Figure 47: Typical compressibility curve of ceramic material. 
 

The microstructure development of the powder after being pressed explains the presence 

of these three regions. Figure 48 shows a schematic representation of the microstructure 

of ceramic powder synthesized by wet chemical method [121; 122]. The microstructure 

of powder directly after synthesis is different from the one after drying. As synthesized 

powder is composed of small and strong aggregates of primary particles, whereas dried 

powder is composed of weak and highly porous agglomerates of aggregates. 

 

 
Figure 48: Schematic representation of the microstructural elements (primary particles. aggregates 
and agglomerates) of ceramic powder (as synthesized sample and after drying) synthesized by wet 
chemical method. Average size D is given for each elements [123]. 
 

When powder is pressed into compact pellets, the microstructure of dried powder is 

damaged. At low pressure (P < P1), the pellet is compacted by partial fragmentation and 
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reorganization of the agglomerates. At higher pressure (P1 < P < P2), agglomerates 

fragment and rearrange themselves. At high pressure (P2 < P), as the agglomerates 

already cracked, the aggregates fragment and reorganize. Pressure P1 corresponds to the 

average compression strength of the agglomerates, whereas the pressure at the second 

break point (P2) corresponds to the average compression strength of the aggregates. 

 

The compressibility and the sinterability were investigated on the same samples, in order 

to determine the maximal sintering density achievable. Here, the results are compared for 

pellets made of powder calcined at 350 °C (T2), 500 °C (T3) and 950 °C (T4). Figure 49 

to Figure 51 show the green densities (ρg) and the sintering density (ρs) versus the applied 

pressure (P) of La-monazite pellets. The relative green density that corresponds to each 

of the three temperatures shows a similar behavior as on Figure 47. 

 

 
Figure 49: Green density (ρg) and sintering density (ρs) of pellets pressed with La-monazite powder 
after calcination at T2 = 350 °C. 
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Figure 50 : Green density (ρg) and sintering density (ρs) of pellets pressed with La-monazite powder 
after calcination at T3 = 500 °C. 
 

 
Figure 51 : Green density (ρg) and sintering density (ρs) of pellets pressed with La-monazite powder 
after calcination at T4 = 950 °C. 
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After three hours of sintering at 1400 °C, the relative sintering density of the pellets was 

determined by hydrostatic weighing in water (see sub-section 3.1.4.1). The values of ρs at 

each calcination temperature show a well defined maximum, which corresponds to the 

optimal compaction pressure (Popt). For uniaxial pressing, a maximal pressure is always 

observed, above which delamination of the pellet takes place. This delamination 

phenomenon induces the separation of the pellet into horizontal layers after unloading 

[124]. 

Figure 52, the values of Popt as well as the corresponding relative sintering density ρs are 

plotted together with P1 and P2, in relation with the calcination temperature. The values of 

P1 and P2 respectively follow a simple linear regression. At T3 and T4, the value of Popt is 

slightly lower than P2. The maximal relative sintering density is of 98.0 % and is 

achieved for pellets made of powder calcined at 500 °C and pressed at 472 MPa. Pellets 

used for dissolution tests and radiation tolerance tests are synthesized at these optimal 

parameters. 

 

 
Figure 52 : Summation of the pressures P2, Popt, P1 obtained for T = 350 °C, 500 °C and 950 °C. 
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4.2.4. Vickers microhardness and fracture toughness of La-monazite 

The mechanical properties of La-monazite pellets were investigated in terms of Vickers 

microhardness (Hv) and fracture toughness (KIC). Both values are measured on the same 

samples. The indents formed during the microhardness measurement are the source of the 

cracks used to determine the fracture toughness, which is the property of a cracked 

sample to avoid fracture. Figure 53 is a picture of a typical Vickers indenter on a La-

monazite pellet. The red arrow shows a crack induced by the diamond Vickers indenter. 

 
Figure 53: Indent and cracks on a La-monazite pellet due to the Vickers microhardness 
measurements. 
 

Table 18 summarizes reference data and average values obtained for La-monazite pellets 

synthesized in this work. The two values of Hv are in good agreement (5.7 ± 0.1 GPa and 

5.6 ± 0.4 GPa). The average fracture toughness calculated here is compared to a reference 

data obtained by a different method. The value gained by the Anstis equation 

(1.25 ± 0.14 MPa·m0.5) is slightly higher than the reference data (1.0 ± 0.1 MPa·m0.5). 

However, the value are similar within the marge of error.  

The fracture toughness of La-monazite is comparable to porcelain, which is about 

1.0 to 1.3 MPa·m0.5 [125]. Compared to other ceramic materials like alumina 

(2.5 to 3.5 MPa·m0.5) and silicon carbide (2.6 to 2.8 MPa·m0.5), the fracture toughness of 

La-monazite is low. Nevertheless, the value of borosilicate glass is about 

0.75 to 0.82 MPa·m0.5. Therefore, La-monazite crystal has a higher ability to resist 

fracturing than borosilicate glass [125]. 
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Table 18: Comparison of average values of Vickers microhardness and fracture toughness, between 
La-monazite pellets synthesized in this work and reference data of La-monazite. 

 

Hv (GPa) 

K IC (MPa·m0.5) 

 Anstis equation Chantikul equation 

This work 5.7 ± 0.1 1.25 ± 0.14 - 

[92] 5.6 ± 0.4 - 1.0 ± 0.1 

 

 

4.2.5. Dilatometric measurements on La-monazite calcined at different temperatures 

As already mentioned (see section 4.2.1), the sintering process almost always induces 

densification of the material. Theoretically, this densification takes place in three stages 

[124]: the initial stage for 0.50 < ρ < 0.65, the intermediate stage for 0.65 < ρ < 0.92 and 

the final stage for 0.92 < ρ. The beginning of the densification (0.50 < ρ < 0.65) is related 

to the reorganization of the particles, as well as their consolidation with formation of 

necks between grains. Then (0.65 < ρ < 0.92), the open porosity is eliminated and the 

grain growth starts slowly. Finally (0.92 < ρ), the densification corresponds to the 

elimination of the closed porosity. An important grain growth is often observed. 

The sintering behavior of La-monazite calcined at T2 (350 °C), T3 (500 °C) and T4 

(950 °C) was investigated by dilatometry up to 1400 °C. Dilatometric measurements on 

similar samples are reported in the literature: GdPO4 and La0.5Gd0.5PO4 [42], as well as 

La-rhabdophane and La-monazite [110]. In this work, the relative density of pellets and 

the densification rate were calculated with the linear relative shrinkage using  

equation ( 9 ) [97]. Figure 54 shows the evolution of the relative density with the 

temperature of pellets made of powder calcined at T2 (350 °C), T3 (500 °C) and T4 

(950 °C). Figure 55 shows the derivative of the relative density as a function of the 

temperature. Characteristic densities and temperatures are plotted on the figures as dotted 

line. Both figures are complementary and are analyzed in parallel. Table 19 summarizes 

the characteristic T* and T** temperatures, as well as the corresponding relative 

densities. 
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Figure 54 : Relative density versus the temperature of pellets made of powder calcined at 
350 °C (red), 500 °C (black), and 950 °C (green), respectively. 
 

 
Figure 55 : Derivative of relative density versus the temperature of pellets made of powder calcined 
at 350 °C (red), 500 °C (black), and 950 °C (green), respectively. 
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The T2 (red) and T3 (black) curves show a similar initial behavior, while the T4 curve 

(green) reveals a higher initial density. The density at 200 °C is 57 % (T2), 56.5 % (T3), 

and 61 % (T4). This observation is likely to be related to differences in grain size (see 

Table 10). The grain size is comparable for T2 and T3 (about 20 nm), whereas the grain 

size of T4 is more than ten times higher (about 250 nm). At 950 °C, the crystallization 

process has already started, and the powder shows consolidation and a growing 

uniformity. This morphology leads to a higher initial density of the sample. The increase 

of the density starts at 400 °C (T2), 560 °C (T3) and 900 °C (T4), and it corresponds to the 

beginning of the sintering [77]. 

The first particular temperature (T = 980 °C), was determined with the second derivative 

of ρ (T) and corresponds to the beginning of the initial stage. It is also the beginning of an 

increase of the relative density. The slight densification recorded from room temperature 

up to 980 °C can be related to the mass loss observed by the thermogravimetric 

measurements (see section 4.1.1). This mass loss in the structure induces a contraction of 

the lattice [110]. The initial stage occurs from 980 to 1155 °C, as the density increases 

from 60 to ~67 %. At about 1065 °C, the derivative of the density of T2 and T3 shows a 

maximum. It corresponds to a density of ~ 65 % for both samples. 

The intermediate stage takes place from 1155 °C (T*) to approx. 1370 °C (T**), as the 

density increases from 67 to 93 % (see Table 19). The T* temperature (1155 °C) 

corresponds to the end of a complex behavior (Figure 55) and was determined precisely 

from the secondary derivative of ρ (T). This complex behavior is related to the end of the 

elimination of residual OH-groups. The stable sintering starts at 1155 °C. At 

temperatures of 1292 °C, 1298 °C, and 1327 °C for T2, T3, and T4 respectively, the 

densification rate is decreasing abruptly. This phenomenon is also observed in the work 

reported in [42], and the corresponding density is approx. 83 %. 

The final stage takes place from T** to 1400 °C, as density increases from 93 % to the 

final density value. The derivative curve shows an increase. The final sintering density is 

approx. 96.69 %, 96.17 %, and 95.04 % for T2, T3, and T4, respectively. These values are 

lower than the ones obtained from the density measurement after sintering at 1400 °C 

(97.8 %, 98.0 %, and 97.9 %, see Figure 52). This difference is due to the sintering dwell 
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time of 3 hours at 1400 °C, while the thermal treatment in dilatometric measurements has 

no dwell time at 1400 °C. 

 

Table 19: Characteristic temperatures (T*, T**) and the associated densities of pellets made of 
powder calcined at 350 °C, 500 °C, and 950 °C. 

 T2 = 350 °C T3 = 500 °C T4 = 950 °C 

T* (ρ (%)) 1155 °C (69.8 %) 1155 °C (67.9 %) 1155 °C (63.7 %) 

T** (ρ (%)) 1368 °C (93.9 %) 1364 °C (92.4 %) 1383 °C (92.2 %) 
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4.3. Resistance to corrosion and to irradiation of monazite-type samples 

4.3.1. Aqueous durability tests on monazite-type samples 

Information on the long-term behavior of the matrices in final disposals is needed. The 

behavior of the host matrices during a worst-case scenario, i.e. water reaches and enters 

into nuclear waste containers, has to be investigated. An intrusion of liquid would be a 

cause for the radionuclides migration in the biosphere.  

The interaction between the liquid and the ceramic in weathering conditions can be 

simulated with aqueous dissolution tests. The aim of these tests is to obtain quantitative 

dissolution rates of different elements within their crystal structure and to understand 

dissolution mechanisms. 

 

4.3.1.1. Normalized weight loss and normalized dissolution rate of La in La-monazite 

Analysis of the samples 

The La-monazite used for the aqueous durability tests was synthesized with powder using 

a La:P molar ratio of 1:1. The experiments were realized on crushed pellets fractionated 

with 100 µm- and 180 µm-sieves (see flow chart on p. 47). 

Figure 56 shows the crushed pellets before the durability tests. The size of the grains is 

not exclusively comprised between 100 µm and 180 µm, as the sieves are bi-dimensional 

whereas the grains are tri-dimensional. However, the grains show a regular size, above 

100 µm and below 400 µm.  

The XRD pattern of the sample is shown on Figure 57 together with the LaPO4 reference 

(database PDF 2, n° 00­032­0493). The sample (black curve) matches with the indexed 

Bragg reflections of the reference (blue peaks). The sample is composed of LaPO4 phase 

and is free of La3PO7 impurities. 
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Figure 56: SEM photos of crushed LaPO4 pellets fractionated with 100 µm- and 180 µm-sieves. 
Pictures are at a magnification of 100 (left) and 800 (right). 
 

 

 

 
Figure 57: XRD pattern of LaPO4 sample used for leaching tests (black)  
together with reference data of LaPO4 (blue). 
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Interpretation of the results 

La-monazite has a low solubility (see section 2.6.4). The evolution of the normalized 

weight loss of low soluble ceramics can be schematically represented as on Figure 58. 

The cases of an unwashed sample as well as a washed sample are shown here. An 

unwashed material will exhibit initial perturbations, due to surface heterogeneity (e.g. 

non-stoichiometry or presence of small particles at the surface) [39; 126]. The curves are 

then divided in a first part driven by kinetics and a second part essentially driven by 

thermodynamics. In the first part, the dissolution occurs far from the equilibrium and the 

normalized dissolution rate RL is constant. RL can be determined by the slope of the linear 

curve (see equation ( 11 )) [39]. In the second part, the evolution of the dissolution 

decreases because the thermodynamic equilibrium was achieved in the leachate. The 

solution is saturated with the dissolute product and further dissolution cause the 

precipitation of a neoformed phase. The release of the elements in the leachate is due to 

diffusion processes [127]. The determination of the normalized dissolution rate is more 

complex near the equilibrium, than far from the equilibrium. 

Figure 59 shows the normalized weight loss NL versus time of La within a La-monazite 

sample. The experiment is described in section 3.1.12. Initial perturbations are observed 

during the first three days of the experiment. These perturbations are due to the washing 

of the samples with distilled water instead of acidic media. A washing at low pH could 

have discarded the irregularities at the surface and avoid this behavior of NL. From day 3 

up to day 28, the values of NL show a linear behavior. The slope of the linear regression 

corresponds to the normalized dissolution rate RL (La). Here, 

RL (La) = 6.71·10-5 g·m-2·d-1. 
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Figure 58: Schematic representation of the normalized weight loss (NL(i)) of a low soluble sample.  
The cases of a sample either with or without initial perturbations are presented [39; 128]. 
 

 

 
Figure 59: Normalized weight loss NL (La) of unwashed La-monazite sample versus time. 
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4.3.1.2. Normalized dissolution rate of La and Eu in Eu-doped La-monazite 

Aqueous dissolution tests on Eu-doped LaPO4 were run in the same conditions as for 

LaPO4. The results are reported in Table 20. Some NL (Eu) values can not be taken into 

account, because the leachate is near the thermodynamic equilibrium. The concentration 

of Eu in the leachate is about 1.19·10-5 mol·L-1 (see 3.1.12). 

 

Table 20: Normalized weight loss NL(i) of La and Eu in La(1-x)EuxPO4 (with x = 0.0 to 1.0), after 0.2 to 
28 days. 

  Normalized weight loss NL(i) (g·m-2) 

         days 

x / i  
0.2 1 2 3 7 14 28 

0.0 La 2.71·10-3 2.98·10-3 3.30·10-3 3.67·10-3 3.86·10-3 4.13·10-3 5.33·10-3 

0.2 
La 1.50·10-4 3.78·10-4 5.13·10-4 5.58·10-4 1.22·10-3 1.62·10-3 1.57·10-3 

Eu 6.40·10-4 1.23·10-3 1.71·10-3 1.95·10-3 3.70·10-3 6.32·10-3 6.17·10-3 

0.5 
La 6.25·10-4 1.21·10-3 1.83·10-3 2.11·10-3 -a 2.84·10-3 3.30·10-3 

Eu 2.11·10-3 3.35·10-3 4.75·10-3 5.63·10-3 - - - 

0.8 
La 2.00·10-3 3.42·10-3 3.37·10-3 4.68·10-3 5.95·10-3 5.63·10-3 7.79·10-3 

Eu 5.14·10-3 - - - - - - 

1.0 Eu 5.30·10-3 - - - - - - 
a not measured. 

 

Figure 60 summarizes the values of normalized dissolution rates RL of La and Eu 

obtained with Eu-doped LaPO4 samples. The rates are calculated with the values of NL 

from day 3 to day 28. RL (La) varies between 3.40·10­5 and 1.10·10-4 g·m­2·d­1. It can be 

seen that the normalized dissolution rate is dependent of the composition of the (La, 

Eu)PO4 solid solution. Within our experiments, a minimum dissolution rate was obtained 

for the La0.8Eu0.2PO4 composition. With higher doping of Eu, the dissolution rate 

increases up to 1.10·10-4 g·m­2·d­1 for La0.2Eu0.8PO4. Further aqueous dissolution tests 

would determine if a RL minimum could be reached for a Eu content of 27 mol% (black 

arrow on Figure 60). This value is a typical actinide waste loading within monazite-type 

ceramics [8]. 
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The rate for Eu within a La0.8Eu0.2PO4 composition is 1.58·10­4 g·m-2·d-1. The dissolution 

is called congruent if the elements of the matrix being dissolved have the same 

normalized dissolution rate. Within La0.8Eu0.2PO4, Eu has definitely a higher dissolution 

rate than La. The ratio of RL (Eu) over RL (La) is 4.65 [39; 129]. As this value is superior 

to 1, the dissolution of Eu-doped LaPO4 can be qualified as incongruent. In the work of 

Cetiner et al., the dissolution of La-monazite was also found to be incongruent [130]. 

 

 
Figure 60: Normalized dissolution rate RL (La (grey) and Eu (red)) of Eu-doped LaPO4. 
RL is calculated with NL values between day 3 and day 28. 
 

4.3.1.3. Comparison with the literature 

The dissolution rates of Ce (43 mol%) within natural monazite obtained in acidic media 

(pH = 2) at different temperatures were shown above (Table 7, p. 37) [41]. The 

dissolution rate of Ce at 70 °C is 1.33·10-5 g·m-2·d-1. Regarding the temperature of the 

media, the difference between this work and the work of Oelkers et al. is 20 °C. 

However, the dissolution rate is of the same order of magnitude than RL(La) in a 50 mol% 

content of La in Eu-doped LaPO4 (RL(La) = 5.00·10­5 g·m­2·d­1). The data measured here 

are in good agreement with the data found for natural analogues. 
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In the work of Terra et al. [42], normalized dissolution rate of GdPO4 in acidic media is 

measured. At very low pH (pH = 1), RL (Gd) is of (3.8 ± 0.8)·10-4 g·m-2·d-1. At higher pH 

(pH = 4), RL (Gd) is of (4.8 ± 1.4)·10-6 g·m-2·d-1. If it is assumed that RL (Gd) is 

proportional to pH between pH = 1 and pH = 4, RL (Gd) at pH = 2 would be about 

2.6·10­4 g·m-2·d-1. This value is of the same order of magnitude as RL (Eu) 

(1.58·10­4 g·m­2·d­1 at pH = 2). 

To conclude, RL (La (Z = 57)) is of the same order of magnitude of the dissolution rate of 

Ce (Z = 58), and RL (Eu (Z = 63)) is of the same order of magnitude of RL (Gd (Z = 64)). 

Due to the lanthanide contraction, the size of La+3 is close to the size of Ce3+, and the size 

of Eu+3 is close to the size of Gd3+. The size of the ion could have an impact on its 

dissolution rate within the monazite host matrices. This assumption needs to be verified 

on the basis of further experiments. 

 

Pierce et al. worked on the dissolution of LaBS glass [29]. The normalized release rate of 

B is 1.22 ± 0.14·10-3 g·m-2·d-1, which is one order of magnitude higher than Eu and even 

two orders of magnitude higher than La in Eu-doped La-monazite. Table 21 shows the 

normalized dissolution rate of Na, Cs and Sr in phosphate and borosilicate glasses, 

measured in deionized water at room temperature [131]. 

The average value of RL in borosilicate glass is 0.5·10­2 g·m-2·d-1, and it is of 

0.8·10­2 g·m-2·d­1 in phosphate glass. The normalized dissolution rates of Eu and La are 

two and three orders of magnitude respectively lower than the values found by Lee for 

glasses [131]. 

 

Table 21: Normalized dissolution rate (RL) of borosilicate and phosphate glasses [131]. 
 

 Normalized dissolution rate RL (i) (g·m-2·d-1) 

                 i 

Glass type             
Na Cs Sr 

Borosilicate 0.9·10-2 0.3·10-2 0.2·10-2 

Phosphate 0.8·10-2 1.1·10-2 0.4·10-2 
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The normalized dissolution rates of the lanthanides within La-monazite found here are 

lower than the ones of B, Na, Cs and Sr in glasses. Therefore, the synthetic monazite as a 

host phase can be considered superior to amorphous material such as borosilicate and 

phosphate glasses due to its low aqueous dissolution rate. 
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4.3.2. Radiation tolerance tests on La-monazite pellets by means of ion implantation 

Host matrices for MA have to resist to self-irradiation. The structural damages created by 

the self-irradiation are mainly due to the alpha recoil. In order to recreate the damages at 

a laboratory scale, the inner irradiation is simulated by means of external bombardment 

of the matrix with ions. Here, the recoil of the alpha particle is simulated with 

implantation of Kr2+ ions. 

4.3.2.1. Raman spectroscopy of La-monazite pellets before ion implantation 

The Raman measurement is represented with intensity (counts) versus Raman shift 

(cm­1). Figure 61 shows the fitted spectrum obtained for a LaPO4 pellet. Thirty different 

Raman frequencies are observed on the plot. The positions of the single peaks are given 

in Table 22, together with values found in the literature for LaPO4 samples. The data 

measured in this work matches with the literature. Furthermore, peaks at frequencies 

143 cm-1, 194 cm-1, 560 cm-1, 931 cm-1, 947 cm-1 and 965 cm-1 were observed for the first 

time, due to the high-quality of the measurement. 

 

 
Figure 61: Raman spectrum of a LaPO4 pellet with the corresponding fit and the peak 
positions (blue). 
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Table 22: Raman frequencies of a LaPO4 pellet compared with values found in the literature. 

This work [132] [133] [134] 
Assignment 

[132] 

90 90 90 90 (1.6) Lattice 

101 100 100 100 (0.6) Lattice 

121 - 120 120 (0.2) Lattice 

132 - 131 131 (0.4) Lattice 

143 - - - Lattice 

151 151 151 151 (0.5) Lattice 

- 157 - - Lattice 

171 170 170 170 (0.5) Lattice 

183 184 183 183 (0.3) Lattice 

194 - - - Lattice 

220 219 220 220 (1.0) Lattice 

226 226 227 227 (1.1) Lattice 

258 258 255 255 (0.4) Lattice 

272 275 271 271 (1.0) Lattice 

396 396  394 (0.9) Lattice 

414 413 414 414 (1.5) Lattice 

466 466 465 465 (1.7) ν2 

538 534 537 537 (0.4) - 

560 - - - - 

572 567 572 57 2 (0.5) - 

590 587 589 589 (0.3) - 

620 620 619 619 (0.8) ν4 

931 - - - - 

947 - - - - 

965 - - - - 

968 968 967 967 (10.0) ν1 

992 987 991 991 (1.7) - 

1026 1021 1025 1025 (0.4) - 

1056 1054 1055 1055 (2.9) ν3 

1066 - 1065 1065 (0.4) - 

1074 1070 1073 1073 (0.8) - 
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According to Silva [132], the Raman shift between 90 cm-1 and 414 cm-1 is attributed to 

lattice vibrations. Figure 62 shows the ν1 to ν4 modes of vibration of a [PO4] tetrahedron. 

The Raman shift ascribed to ν2 and ν4 (at 466 cm-1 and 620 cm-1) show symmetrical and 

anti-symmetrical bending vibrations of the [PO4] tetrahedron respectively [132]. The 

frequencies ν1 and ν3 corresponds to symmetrical and anti-symmetrical stretching 

vibrations of the [PO4] tetrahedra [132]. The frequencies, at which bands are not 

assigned, are essentially due to vibrations of [LnO9] polyhedra. 

 

 
Figure 62: Normal modes of vibration (ν1 to ν4) of tetrahedral XY4 molecules like PO4 [135]. 
 

4.3.2.2. Raman spectroscopy of La-monazite pellets after Kr2+ implantation 

The radiation damage is induced by external irradiation. The ion bombardment on La-

monazite-type pellets was performed with an ion implanter. Three pellets have been 

bombarded with Kr2+ ions (400 keV) at a fluence of 1012 to 1014 ions·cm-2. The effects of 

the damage were analyzed by Raman spectroscopy.  

Figure 63 shows the intensity versus the Raman shift measured on the pellets after the ion 

bombardment at different fluences. The measurement shows no difference between the 

un-irradiated sample and the sample irradiated at a fluence of 1012 ions·cm-2. The 1013 

and 1014 ions·cm-2 samples show new Raman shifts. In particular between 275 and 

375 cm-1, 425 and 450 cm-1, and between 900 and 931 cm-1 (black arrows). However, no 

amorphization, which should involve a clear peak broadening, is observed. This radiation 

tolerance tests confirmed that LaPO4 is not metamict under these experimental 

conditions. 
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Figure 63: Intensity versus Raman shift of LaPO4 pellets before and after ion bombardment. 
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5. Conclusion and outlook 

The issue of nuclear waste disposal is of general importance as it concerns not only the 

countries that decided to expand the use of the nuclear power, but also the countries that 

approach the phase-out of nuclear power generation. The current strategies followed in 

Europe are the direct disposal of spent nuclear fuel and the disposal of vitrified waste 

(after reprocessing). However, ceramic waste forms seem to offer several properties 

related to the long-term safety, such as resistance to radiation damage and aqueous 

durability, which are superiors to these strategies. 

 

This PhD work contributes to the research in the field of the improvement of the long-

term safety of nuclear waste disposals. The aim was to define the ability of the 

La­monazite-type ceramics as host matrix for minor actinides (MA), which are mainly 

responsible for the long-term radiotoxicity. The main material properties required for this 

purpose are the incorporation of the long-lived elements on regular atomic positions 

within their crystal structure, and the stability of the doped ceramic material in terms of 

aqueous durability and resistance to irradiation. An integral approach was followed, 

including an adequate ceramic synthesis procedure, a material characterization, aqueous 

alteration experiments under repository conditions, and tests of stability against radiation 

damage. 

 

In the first chapter (sections 4.1.1 and 4.1.2), the thermal behavior (TG-DSC), the 

morphology (SEM), and the crystal structure (XRD) of La-monazite powder synthesized 

by hydrothermal route (at 200 °C) were analyzed. Thermogravimetric analyses define 

characteristic temperatures during a thermal treatment up to 1300 °C: at 350 °C adsorbed 

water and NH4NO3-impurities are eliminated, between 500 °C and 800 °C the La-

rhabdophane phase (LaPO4·H2O) is transformed into La-monazite, and above 1120 °C 

the last OH-groups are eliminated leading to the ending of the sample weight loss. The 

monoclinic structure of the La­monazite phase was confirmed by XRD analyses. 

SEM investigations on 95 °C-dried powder showed that the nanoparticles (25 nm) tend to 

form aggregates of approx. 100 nm. Further measurements via the BET and the Hall-

Williamson methods concluded that after a thermal treatment at 1400 °C, particles have a 
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size of approx. 400 nm and consists of nanocrystallites of approx. 70 nm. At high 

temperature, the crystallization of the ceramic reduces the lattice distortion to 

approximately zero.  

Furthermore, seven compositions of Eu-doped LaPO4 samples were synthesized and their 

lattice parameters (a, b, c, β) as well as the unit cell volume (V) were evaluated for the 

first time. The decreasing of the lattice parameters a, b, c, and V is likely to be related to 

the progressive replacement of La by Eu in the crystal structure. It suggests the existence 

of a regular solid solution (La, Eu)PO4 between the end members LaPO4 and EuPO4. The 

incorporation of dopants in the lattice structure of La-monazite was then investigated in 

details by spectroscopic methods (TRLFS and EXAFS) and was presented in the next 

sections (4.1.3 and 4.1.4). TRLFS was used to explore the local structural environment of 

Eu (III) and Cm (III) within the monazite crystal structure. Several authors reported about 

the luminescent properties of synthetic monazite when it is doped with Eu, but there is no 

data about Cm-doped LaPO4 so far. In Eu-doped LaPO4, a major species is identified at 

578.4 nm and a minor species at 577.5 nm. After the thermal treatment of the sample, the 

major species is still seen at 578.4 nm, whereas the minor species changes from 577.5 to 

578.9 nm. Nevertheless, the spectra before and after thermal treatment show the same 

shape and no significant change. Eu is situated on the La site in both cases, even after 

synthesis at low temperature (200 °C). The major Eu species shows a long fluorescence 

lifetime before as well as after thermal treatment at 1000 °C (5.2 ms and 3.6 ms 

respectively). The Horrocks equation indicates that no water is found in the first 

coordination sphere. The minor Eu species shows a shorter fluorescence lifetime than the 

major Eu species with values before and after thermal treatement of 0.95 ms and 1.4 ms 

respectively. These lifetimes indicate that 0.5 and 0.1 waters are present in the first 

coordination sphere of Eu. The presence of a hydroxide interstitial is assumed. 

Before thermal treatment, the data obtained from fluorescence lifetime measurements on 

Cm-doped LaPO4 show a long fluorescence lifetime of 1.7 ms for the major species, 

which corresponds to an absence of water in the first coordination sphere of Cm, as in the 

case of Eu-doped LaPO4. Through a comparison with the case of Eu-doped LaPO4, the 

major Cm species is supposed to be on a La site of LaPO4. The minor Cm species has a 

lifetime of 0.52 ms, and shows the presence of 0.4 waters in the first coordination sphere 
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of Cm. This is a similar value as for the minor Eu species. After thermal treatment, Cm 

within the Cm-doped LaPO4 structure has a single Cm site, but shows four species, each 

one showing a four-fold splitting. The Cm environment of each four satellites is almost 

identical: similar degree of splitting, ratio of peak heights, proximity to each other, and an 

unique lifetime. As the unit cell of LaPO4 is composed of four La atoms, the hypothesis 

suggested in this work is that a difference in the four La sites within a LaPO4 unit cell 

exists. This would be a deviation from the ideal structure of La-monazite, which is shown 

by the four satellites of Cm. 

The environment of Eu (III) within Eu-doped LaPO4 sample was also analyzed with 

EXAFS. The first coordination sphere was modeled as three oxygen shells (NO1 = 4 at 

r(Eu-O1) = 2.37 Å, NO2 = 4 at r(Eu-O2) = 2.53 Å, and NO3 = 1.5 at r(Eu-O3) = 2.83 Å). 

Thus, the fit suggests the presence of 9.5 oxygen atoms surrounding Eu (III). The 

distances between Eu and the oxygen atoms determined in this work are in good 

agreement with the La-O distances described in the literature. The 9.5 oxygen atoms in 

the first coordination sphere are within the measurement uncertainties similar to 9.0. 

Europium is 9-fold coordinated by oxygen atoms, thus showing that Eu is incorporated in 

the La-monazite matrix at a La site. This result is consistent with the conclusion gained 

from the TRLFS measurements, i.e. that the Eu species incorporate on the La site. 

 

In the second chapter (4.2), physical and thermal properties of monazite pellets were 

described, such as green and sintering densities, Vickers microhardness, fracture 

toughness, and dilatometric behavior. The optimal pressure (Popt) corresponds to the 

maximal density achieved and is obtained via the study of compressibility and 

sinterability. The maximal relative sintering density is 98.0 % and it is reached for pellets 

made of powder calcined at 500 °C and pressed at 472 MPa. The average fracture 

toughness values are between 1.25 and 1.38 MPa·m0.5, while it is approx. 0.75 to 

0.82 MPa·m0.5 for borosilicate glasses. Therefore, the crystalline phase La-monazite has a 

higher ability to resist to fracture than borosilicate glass, which is currently used as 

matrix for fission products. Dilatometric measurements enabled to analyze the sintering 

behavior of pellets made of powder calcined at 350 °C, 500 °C, and 950 °C. The initial, 

intermediate, and final stages of the densification takes place at 980-1155 °C, 1155-
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1370 °C, and 1370-1400 °C, with an increase of the density of 60-67 %, 67-93 %, and 

93-96 % respectively. The intermediate stage corresponds to the end of the residual OH-

groups elimination and to the start of a stable sintering. 

 

In the third chapter (4.3), the resistance to corrosion and to irradiation of sintered 

monazite-type samples was tested. New static aqueous durability experiments on five 

compositions of Eu-doped LaPO4 were realized in an acidic media at 90 °C (section 

4.3.1). The normalized dissolution rates determined in this work are in good agreement 

with values of synthetic and natural monazites of different compositions described in the 

literature. The normalized dissolution rate RL (La) (5.00·10­5 g·m­2·d­1) is of the same 

order of magnitude of RL (Ce) (1.33·10-5 g·m-2·d-1) in natural monazite, taking into 

account that the experiments of the natural analogue were realized at slightly lower 

temperature (70 °C). RL (Eu) (1.58·10­4 g·m­2·d­1) is of the same order of magnitude of 

the approximated value RL (Gd) (2.6·10­4 g·m­2·d­1), both values were measured in the 

same conditions. The ion radius might have an impact on its dissolution rate within the 

monazite host matrices. This assumption requires to be verified with further experiments. 

Furthermore, the normalized dissolution rates of La and Eu within monazite-type 

ceramics are lower than that of B, Na, Cs and Sr in glasses (approx. 4·10-3 g·m­2·d­1), 

although the experimental conditions were weaker since the experiment was realized in 

deionized water at room temperature. Therefore synthetic monazite can be considered as 

a host phase superior to amorphous material such as borosilicate and phosphate glasses, 

due to its low aqueous dissolution rate. The realization of dynamic tests instead of static 

tests would inhibit the achievement of the thermodynamic equilibrium. This could permit 

the achievement of normalized dissolution rate for Eu within Eu-doped LaPO4 for an Eu 

content above 20 mol%. 

Host matrices for MA must also resist to self-irradiation. The structural damages created 

by the self-irradiation are mainly due to the alpha recoil. In order to recreate the damages 

at a laboratory scale, the inner irradiation is simulated by means of external bombardment 

of the matrix with ions. In this experiment, the recoil of the alpha particle is simulated 

with implantation of Kr2+ ions (section 4.3.2). Three La-monazite pellets were 

bombarded with Kr2+ ions (400 keV) at a fluence of 1012 to 1014 ions·cm-2, and were 
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measured by Raman before and after the implantation. No amorphization was observed 

after the irradiation, thus confirming that LaPO4 is not metamict under these experimental 

conditions. 

 

Natural lanthanide orthophosphates (REPO4) show the properties that are required for an 

excellent MA host matrix. These minerals are chemically durable regarding to aqueous 

alteration processes, and are chemically flexible. Furthermore, they can incorporate an 

important percentage of actinides, and they are resistant to radiation damage. These 

promising characteristics were found again in the La-monazite-type ceramics doped with 

actinide surrogates that were synthesized in this work, thus proving the potential of this 

candidate as host phase for the conditioning of MA. It confirms that the “monazite route” 

can be trusted, and further experiments should now be realized on monazite-type 

ceramics doped with a higher percentage of actinides. 
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Extended abstract 

The minor actinides (MA) neptunium, americium, and curium are mainly responsible for 

the long-term radiotoxicity of the High Active Waste (HAW) generated during the 

nuclear power operation. If these long-lived radionuclides are removed from the HAW by 

partitioning and converted by neutron fission (transmutation) into shorter-lived or stable 

elements, the remaining waste loses most of its long-term radiotoxicity. Thus, 

partitioning and transmutation (P&T) are considered as attractive options for reducing the 

burden on geological disposals. As an alternative, these separated MA can also be 

conditioned (P&C strategy) in specifically adapted ceramics to ensure their safe final 

disposal over long periods. At the moment, spent fuel elements are foreseen either for 

direct disposal in deep geological repositories or for reprocessing. The highly active 

liquid waste that is produced during reprocessing is conditioned industrially using a 

vitrification process before final disposal. Although the widely used borosilicate glasses 

meet most of the specifications needed, ceramic host matrices appear to be even more 

suitable in terms of resistance to corrosion. The development of new materials based on 

tailor-made highly specific ceramics with extremely stable behavior would make it 

possible to improve the final storage of long-lived high-level radiotoxic waste. 

In the framework of this PhD research project, monazite-type ceramics were chosen as 

promising host matrices for the conditioning of trivalent actinides. The focus on the 

monazite-type ceramics is justified by their properties such as high chemical durability. 

REPO4 ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and 

xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to 

contribute to the understanding of the alteration behavior of such ceramics under the 

repository conditions. 

REPO4 (with RE = La, Eu) is prepared by hydrothermal synthesis at 200°C. Structural 

and morphological characteristics (using X-ray diffraction (XRD) and scanning electron 

microscope (SEM)) combined with physical and thermal properties of samples (using 

thermogravimetry, differential scanning calorimetry (TG-DSC) and dilatometry) are 

realized in order to study the behavior of monazite-type powder and pellets. 

The access to short-range-order spectroscopy (time resolved laser fluorescence 

spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS)) permits to 
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understand the structure of ceramic waste forms at the molecular level. La-monazite 

matrices being doped with Eu (III) (as a non-radioactive chemical homologue for 

Am (III)) and Cm (III), TRLFS is used to explore the local structural environment of Eu 

and Cm within the monazite crystal structure. Eu (III) and Cm (III) are substituted on the 

La site of LaPO4. The single site of Cm (III) is found in four slightly different 

environments which is assumed to be due to a difference in the four La sites within a 

LaPO4 unit cell. Structural parameters of the Eu (III) species were also analyzed by 

EXAFS. The nearest neighbors of Eu (III) are modeled as 9.5 oxygen atoms (NO1 = 4 at 

r(Eu­O1) = 2.37 Å, NO2 = 4 at r(Eu-O2) = 2.53 Å, and NO3 = 1.5 at r(Eu-O3) = 2.83 Å). 

An essential parameter that describes the stability of the host phases is their dissolution 

rate obtained under conditions of relevance for final repositories. In this context, a set-up 

is developed and tested on crushed pellets. Normalized weight losses of lanthanum-

phosphates and europium-doped lanthanum-phosphates, measured in acidic media at 

90 °C, are interpreted and compared against the previous findings from the literature. The 

normalized dissolution rate for La and Eu within (La, Eu)PO4 is between 1·10-5 and 

1·10­4 g·m­2·d-1, whereas the rate of Na, Cs and Sr in phosphate glass at room temperature 

in deionized water is about 1·10-2 g·m-2·d-1. Another essential parameter is their 

resistance to radiation. The damage created by the recoils accompanying alpha-decay can 

be simulated on ceramic matrices. Preliminary experiments are realized by means of ion 

bombardment. Kr2+ ions are implanted in La-monazite-type pellets, and the effects on the 

LaPO4 structure resulting from the Raman spectroscopy are poor. 

On a laboratory scale, the promising characteristics of the monazite mineral are found 

again in the synthetic phosphate. In particular, the doping of actinide surrogates is 

successful and the corrosion tests under repository conditions show a good resistance of 

the samples. The results achieved in this work confirm that among other favorable 

ceramics (e.g. pyrochlore) the “monazite-route” has to be further pursued regarding the 

research on the conditioning of MA. 
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Zusammenfassung 

Für die langfristige Radiotoxizität der hochradioaktiven Abfälle (HAW), die bei der 

Nutzung der Kernenergie anfallen, sind hauptsächlich die minoren Actinoiden (MA) 

Neptunium, Americium und Curium verantwortlich. Durch Partitionierung können diese 

langlebigen Radionuklide abgetrennt werden und durch neutroneninduzierte 

Kernspaltung (Transmutation) in kurzlebige oder stabile Elemente umgewandelt werden. 

Dies führt zu einer signifikanten Abnahme der Langzeitradiotoxizität des verbleibenden 

Abfalls. Partitionierung und Transmutation (P&T) wird als attraktives Konzept gesehen, 

um die Belastung der geologischen Endlagerung zu verringern. Alternativ können die 

abgetrennten MA auch in speziell angepassten Keramiken konditioniert werden (P&C 

Strategie), um deren sichere Endlagerung über lange Zeiträume zu gewährleisten. Vom 

momentanen Standpunkt aus können die abgetrennten Brennelemente entweder in der 

Wiederaufarbeitung eingesetzt werden oder in tiefen geologischen Formationen endlagert 

werden. Der bei der Wiederaufbereitung entstehende hochradioaktive flüssige Abfall, 

wird mit Hilfe eines Verglasungsprozesses vor der endgültigen Entsorgung industriell 

aufbereitet. Obwohl die weit verbreiteten Borosilikatgläser die meisten der erforderlichen 

Spezifikationen für die Endlagerung erfüllen, erscheinen keramische Matrizen im 

Hinblick auf die Beständigkeit gegen Korrosion besser geeignet zu sein. Die Entwicklung 

neuer Materialien basierend auf maßgeschneiderten hochspezifischen Keramiken mit 

extrem stabilen Eigenschaften würde es ermöglichen, die Endlagerung des langlebigen 

hochradiotoxischen Abfalls zu verbessern. 

Im Rahmen dieser Doktorarbeit wurden Keramiken mit der Monazit-Struktur als 

vielversprechende Wirtsphase für die Konditionierung von dreiwertigen Actinoiden 

gewählt. Die Fokussierung auf die Keramik des Monazit-Typs ist auf Grund ihrer 

Eigenschaften wie der hohen chemischen Beständigkeit gerechtfertigt. REPO4 Keramiken 

mit RE = La - Gd werden als Monazite (monokline Symmetrie) bezeichnet, wohingegen 

Systeme mit RE = Tb - Lu und Y als Xenotim (tetragonale Symmetrie) bezeichnet 

werden. Das Ziel dieser Arbeit ist es, einen Beitrag zum Verständnis der Veränderung 

dieser Keramiken unter endlagerrelevanten Bedingungen zu leisten. 

REPO4 (mit RE = La, Eu) wird bei 200 °C über eine Hydrothermalsynthese hergestellt. 

Strukturelle und morphologische Eigenschaften (mit Röntgenbeugung und 
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Rasterelektronenmikroskop (REM)) kombiniert mit physikalischen und thermischen 

Eigenschaften der Proben (Thermogravimetrie, dynamische Differenzkalorimetrie und 

Dilatometrie) werden untersucht, um das Verhalten der Monazitstruktur an Pulvern und 

Pellets zu analysieren. 

Der Zugang zu Verfahren der Nahordnungsspektroskopie (zeitaufgelöste Laser-

Fluoreszenzspektroskopie (TRLFS) und EXAFS-Spektroskopie (Extended X-ray 

Absorption Fine Structure)) ermöglicht eine Charakterisierung der keramischen 

Entsorgungsmatrizen auf einer molekularen Ebene. TRLFS wird verwendet, um die lokale 

strukturelle Umgebung von Eu (III) (als nicht-radioaktives chemisches Homolog zu Am 

(III)) und Cm (III) in der Kristallstruktur von dotierten La-Monazit Matrizen zu 

untersuchen. Eu (III) und Cm (III) substituieren La (III) in LaPO4. Die einzige „Site“ von 

Cm (III) wird in vier leicht unterschiedlichen Umgebungen gefunden, was vermutlich 

durch vier verschiedene Positionen der La-„Sites“ innerhalb einer LaPO4 Elementarzelle 

verursacht wird. Strukturparameter der Eu (III)-Spezies wurden durch EXAFS analysiert. 

Die nächsten Nachbarn von Eu (III) werden als 9,5 Sauerstoffatome modelliert (NO1 = 4 

bei r(Eu­O1) = 2,37 Å, NO2 = 4 bei r(Eu-O2) = 2,53 Å und NO3 = 1,5 bei 

r(Eu­O3) = 2,83 Å).  

Ein wesentlicher Parameter, der die Stabilität der Wirtsphase beschreibt, ist ihre 

Auflösungsgeschwindigkeit unter Endlager-Bedingungen. In diesem Zusammenhang 

wird ein Versuchsaufbau für Experimente an gemörserten Pellets entwickelt. 

Normalisierte Gewichtsverluste von Lanthan-Phosphaten und Europium-dotierten 

Lanthan-Phosphaten in saurem Medium bei 90 °C werden interpretiert und mit 

Ergebnissen aus der Literatur verglichen. Die normalisierte Auslaugrate für La und Eu 

innerhalb (La, Eu)PO4 liegt zwischen 1·10-5 und 1·10-4 g·m-2·d-1, während die Rate von 

Na, Cs und Sr in Phosphat-Glas bei Raumtemperatur in deionisiertem Wasser etwa bei 

1·10-2 g·m-2·d-1 liegt. Ein weiterer essentieller Parameter ist ihre Resistenz gegenüber 

ionisierender Strahlung. Die Schäden, die durch einen den Alpha-Zerfall begleiteten 

Rückstoß entstehen, können für keramische Matrizen simuliert werden. Dazu werden 

vorläufige Experimente mittels Ionenbeschuss realisiert. Kr2+-Ionen werden dabei in 

La­Monazit Pellets eingebettet. Anhand der Raman-Spektroskopie werden nur schwache 

Auswirkungen auf die LaPO4 Struktur beobachtet. 
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Die vielversprechenden Eigenschaften des Minerals Monazit finden sich in dem 

synthetischen Phosphat wieder. Insbesondere ist die Dotierung der Keramiken mit 

Actinoiden Surrogaten erfolgreich durchgeführt worden und die Korrosionsprüfungen 

unter Endlager-Bedingungen zeigen eine gute Beständigkeit der Proben. Die Ergebnisse 

dieser Arbeit bestätigen, dass neben anderen geeigneten Keramiken (z.B.: Pyrochlor) die 

"Monazit-Route" in Bezug auf die Forschung über die Konditionierung von MA weiter 

verfolgt werden sollte. 
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